Flexural Rigidity of Reinforced Concrete Members

10.14359/9228 ◽  
1989 ◽  
Vol 86 (4) ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 2208 ◽  
Author(s):  
So Yeong Choi ◽  
Yoon Suk Choi ◽  
Il Sun Kim ◽  
Eun Ik Yang

The development of electronic technology has accelerated in recent decades. Consequently, electronic wastes such as cathoderay tube (CRT) glass are accumulated, and hazardous wastes including heavy metals are generated. Simultaneously, natural resources are required to create concrete; however, they are already exhausted. Furthermore, heavyweight waste glass is considered to be the most suitable substitute for aggregate owing to its physical characteristics and chemical composition. However, structural results regarding the recycling of heavyweight waste glass as fine aggregate in Reinforced Concrete (RC) members are insufficient. Thus, herein, experimental study is conducted to evaluate whether RC members with heavyweight waste glass as fine aggregate can be applied for concrete structures. Flexural behavior tests of reinforced concrete members were performed. Fifteen specimens with different substitution ratios of heavyweight waste glass were prepared. The results showed that when all the fine aggregate is replaced by heavyweight waste glass in RC members, the heavyweight waste glass substitution ratio affected the crack occurrence patterns, and the possibility of a sudden failure of a member increased owing to concrete crushing in the compression zone. Additionally, the load capacity and flexural rigidity were affected by the substitution ratio of heavyweight waste glass; however, the flexural performance is improved when mineral admixture as a binder or a low water-binder ratio were used. Therefore, heavyweight waste glass is considered applicable for use as fine aggregate of concrete.


2018 ◽  
Vol 940 ◽  
pp. 141-145
Author(s):  
So Yeong Choi ◽  
San Kim ◽  
Eun Ik Yang

The progress of civilization has been led to the increase of industrial products, the amount of waste is increasing, and its disposal has become a problem. And, the huge amount of expended concrete has led to the dissipation of natural aggregate. To deal with these problems, many researches have been executed to use a variety of industrial waste as aggregate in concrete materials. So, in this paper, the flexural behavior with substitution ratio of heavyweight waste glass were compared and evaluated in reinforced concrete members. From the results, initial cracking load, yielding load and flexural rigidity less affected by substitution ratio of heavyweight waste glass. However, the ductility of the RC member was significantly affected when all of the fine aggregate is replaced by the heavyweight waste glass.


2012 ◽  
Vol 455-456 ◽  
pp. 1079-1083
Author(s):  
Wei Jun Yang ◽  
Hong Jia Huang ◽  
Wen Yu Jiang ◽  
Yi Bin Peng

Shantou atmospheric salt-fog environment is simulated with the comprehensive salt spray test chamber. By using reinforced concrete short beams under different water-cement radio, different corrosion time, the inclined section degradation rules of the corrosive reinforced concrete members are researched for establishing shear capacity of short beam formulas in salt-fog environment.


2010 ◽  
Vol 163-167 ◽  
pp. 1574-1577 ◽  
Author(s):  
Tong Feng Zhao ◽  
Hong Nan Li ◽  
Jia Huan Yu

Moment-deformation curves of square steel tube filled with steel reinforced concrete subjected to bending load were simulated by the ABAQUS software. Calculated and experimental curves agreed well with each other. Through studying further the calculated member, the behavior of materials subjected to moment is given. Finally, flexural capacity formula of square steel tube filled with cross steel reinforced concrete is proposed.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3255 ◽  
Author(s):  
Fang Yuan ◽  
Mengcheng Chen

Fibre-reinforced polymer (FRP)-reinforced concrete members exhibit low ductility due to the linear-elastic behaviour of FRP materials. Concrete members reinforced by hybrid FRP–steel bars can improve strength and ductility simultaneously. In this study, the plastic hinge problem of hybrid FRP–steel reinforced concrete beams was numerically assessed through finite element analysis (FEA). Firstly, a finite element model was proposed to validate the numerical method by comparing the simulation results with the test results. Then, three plastic hinge regions—the rebar yielding zone, concrete crushing zone, and curvature localisation zone—of the hybrid reinforced concrete beams were analysed in detail. Finally, the effects of the main parameters, including the beam aspect ratio, concrete grade, steel yield strength, steel reinforcement ratio, steel hardening modulus, and FRP elastic modulus on the lengths of the three plastic zones, were systematically evaluated through parametric studies. It is determined that the hybrid reinforcement ratio exerts a significant effect on the plastic hinge lengths. The larger the hybrid reinforcement ratio, the larger is the extent of the rebar yielding zone and curvature localisation zone. It is also determined that the beam aspect ratio, concrete compressive strength, and steel hardening ratio exert significant positive effects on the length of the rebar yielding zone.


Sign in / Sign up

Export Citation Format

Share Document