Characteristics of Flexural Behavior of Reinforced Concrete Member Substituted Heavyweight Waste Glass as Fine Aggregate

2018 ◽  
Vol 940 ◽  
pp. 141-145
Author(s):  
So Yeong Choi ◽  
San Kim ◽  
Eun Ik Yang

The progress of civilization has been led to the increase of industrial products, the amount of waste is increasing, and its disposal has become a problem. And, the huge amount of expended concrete has led to the dissipation of natural aggregate. To deal with these problems, many researches have been executed to use a variety of industrial waste as aggregate in concrete materials. So, in this paper, the flexural behavior with substitution ratio of heavyweight waste glass were compared and evaluated in reinforced concrete members. From the results, initial cracking load, yielding load and flexural rigidity less affected by substitution ratio of heavyweight waste glass. However, the ductility of the RC member was significantly affected when all of the fine aggregate is replaced by the heavyweight waste glass.

2018 ◽  
Vol 8 (11) ◽  
pp. 2208 ◽  
Author(s):  
So Yeong Choi ◽  
Yoon Suk Choi ◽  
Il Sun Kim ◽  
Eun Ik Yang

The development of electronic technology has accelerated in recent decades. Consequently, electronic wastes such as cathoderay tube (CRT) glass are accumulated, and hazardous wastes including heavy metals are generated. Simultaneously, natural resources are required to create concrete; however, they are already exhausted. Furthermore, heavyweight waste glass is considered to be the most suitable substitute for aggregate owing to its physical characteristics and chemical composition. However, structural results regarding the recycling of heavyweight waste glass as fine aggregate in Reinforced Concrete (RC) members are insufficient. Thus, herein, experimental study is conducted to evaluate whether RC members with heavyweight waste glass as fine aggregate can be applied for concrete structures. Flexural behavior tests of reinforced concrete members were performed. Fifteen specimens with different substitution ratios of heavyweight waste glass were prepared. The results showed that when all the fine aggregate is replaced by heavyweight waste glass in RC members, the heavyweight waste glass substitution ratio affected the crack occurrence patterns, and the possibility of a sudden failure of a member increased owing to concrete crushing in the compression zone. Additionally, the load capacity and flexural rigidity were affected by the substitution ratio of heavyweight waste glass; however, the flexural performance is improved when mineral admixture as a binder or a low water-binder ratio were used. Therefore, heavyweight waste glass is considered applicable for use as fine aggregate of concrete.


2004 ◽  
Vol 10 (3) ◽  
pp. 209-215
Author(s):  
Hau Yan Leung

Although much research on concrete beams reinforced with fibre‐reinforced polymer (FRP) rods has been conducted in recent years, their use still does not receive the attention it deserves from practicising engineers. This is attributed to the fact that FRP is brittle in nature and the collapse of FRP‐reinforced concrete member may be catastrophic. A rational beam design can incorporate a hybrid use of FRP rods and steel rods. Current design codes only deal with steel‐reinforced or FRP‐reinforced concrete members. Therefore in this study some design charts and equations for concrete beam sections reinforced with FRP rods and steel rebars were generated. Results from the theoretical derivations agreed well with experimental data.


2022 ◽  
Vol 1048 ◽  
pp. 345-358
Author(s):  
A. Kumar Suresh ◽  
M. Muthukannan ◽  
A.D.K.B. Irene ◽  
K. Kumar Arun ◽  
A. Chithambar Ganesh

The flexural behavior of Incinerated Bio-Medical Waste Ash (IBWA) – Ground Granulated Blast Furnace Slag (GGBS) based Reinforced Geopolymer Concrete (RGPC) beams with Waste Glass Powder (WGP) as fine aggregate is explored in this research. The fine aggregate (M-Sand) is substituted by varying the waste glass powder as 0 percent, 5 percent, 10 percent, 15 percent, 20 percent, 25 percent, 30 percent, 35 percent, 40 percent, 45 percent, and 50 percent, and the mixture is cured under atmospheric curing. The impact of the WGP weight percentage on the flexural behavior of GPC beams is analyzed. The conduct of RGPC beams varies from that of ordinary Portland Concrete (OPC) beams, which is defined and examined. Deflection, ductility factor, flexural strength, and toughness index were measured as flexural properties for beams. In contrast to the reference beams, the RGPC beams containing 50% Waste Glass Powder as fine aggregate demonstrated a major increase in cracking resistance, serviceability, and ductility, according to the experimental finding. The RGPC beam without WGP ended in failure with a brittle manner whereas those beams with WGP encountered ductile failure. The RGPC beams' load ability improved by up to 50% as the weight percentage of WGP was enhanced.


2011 ◽  
Vol 71-78 ◽  
pp. 712-716
Author(s):  
An Duan ◽  
Wei Liang Jin

The purpose of this research is to investigate the influence of the freeze-thaw cycles on the flexural behavior of reinforced concrete members. The variation of the concrete stress-strain relationship due to frozen-thawed deterioration was considered. The temperature distribution was calculated based on the heat conduction theory, and the damaged region affected by freeze-thaw cycles was determined. By using Reponse-2000 program, the flexural behaviour of a reinforced concrete slab was analyzed and predicted. The analytical results show that with increase of number of freeze-thaw cycles, the yield moment, the ultimate moment and the curvature ductility decreased, while the relative depth of neutral axis and the midspan deflection increased.


2013 ◽  
Vol 395-396 ◽  
pp. 841-844
Author(s):  
Ping Pang

According to the specification given, the theoretical calculation formula of the theoretical value is higher than the measured load values. Specifications given by the bureau of compressive bearing capacity formula is suitable for ordinary reinforced concrete member. For prestressed concrete members, especially scattered end anchorage of prestressed concrete member, the standard formula is not applicable.


Sign in / Sign up

Export Citation Format

Share Document