Bioethanol Production by Pichia stipitis Immobilized on Water Hyacinth and Thin-Shell Silk Cocoon

Author(s):  
Suchata Kirdponpattara ◽  
Santi Chuetor ◽  
Malinee Sriariyanun ◽  
Muenduen Phisalaphong

Cell immobilization technique was applied in this study in order to examine effect of immobilized Pichia stipitis TISTR5806 on bioethanol production. Water hyacinth (WH) and thin-shell silk cocoon (CC) were used as cell carriers. Characteristics of the cell carriers were examined to explain the mechanism of bioethanol production. Carrier sizes and weights were optimized to improve bioethanol production. Moreover, stabilities of immobilized cells and carriers were evaluated. Because of high porosity, high surface area and good swelling ability of WH, cell immobilized on 1 g WH with 1 cm length produced the highest ethanol concentration at 13.3 g/L. Five cycles of a repeated batch of immobilized cell (IC) system on WH showed stable performance in ethanol production (8.2–10.4 g/L) with large numbers of the immobilized cells. The interaction between the immobilized cells and the WH surface were discovered.

1985 ◽  
Vol 50 (10) ◽  
pp. 2122-2133 ◽  
Author(s):  
Jindřich Zahradník ◽  
Marie Fialová ◽  
Jan Škoda ◽  
Helena Škodová

An experimental study was carried out aimed at establishing a data base for an optimum design of a continuous flow fixed-bed reactor for biotransformation of ammonium fumarate to L-aspartic acid catalyzed by immobilized cells of the strain Escherichia alcalescens dispar group. The experimental program included studies of the effect of reactor geometry, catalytic particle size, and packed bed arrangement on reactor hydrodynamics and on the rate of substrate conversion. An expression for the effective reaction rate was derived including the effect of mass transfer and conditions of the safe conversion-data scale-up were defined. Suggestions for the design of a pilot plant reactor (100 t/year) were formulated and decisive design parameters of such reactor were estimated for several variants of problem formulation.


2021 ◽  
Author(s):  
Yong-Mei Wang ◽  
Xinxin Zhang ◽  
Dingyi Yang ◽  
Liting Wu ◽  
Jiaojiao Zhang ◽  
...  

Abstract The high porosity, controllable size, high surface area, and chemical versatility of a metal-organic framework (MOF) enable it a good material for a triboelectric nanogenerator (TENG), and some MOFs have been incorporated in the fabrication of TENGs. However, the understanding of effects of MOFs on the energy conversion of a TENG is still lacking, which inhibits the improvement of the performance of MOF-based TENGs. Here, UiO-66-NH2 MOFs were found to significantly increase the power of a TENG and the mechanism was carefully examined. The electron-withdrawing ability of Zr-based UiO-66-family MOFs was enhanced by designing the amino functionalized 1,4-terephthalic acid (1,4-BDC) as ligand. The chemically modified UiO-66-NH2 was found to increase the surface roughness and surface potential of a composite film with MOFs embedded in polydimethylsiloxane (PDMS) matrix. Thus the total charges due to the contact electrification increased significantly. The composite-based TENG was found to be very durable and its output voltage and current were 4 times and 60 times higher than that of a PDMS-based TENG. This work revealed an effective strategy to design MOFs with excellent electron-withdrawing abilities for high-performance TENGs.


2015 ◽  
Vol 9 (7) ◽  
pp. 8 ◽  
Author(s):  
Tri Widjaja ◽  
Ali Altway ◽  
Arief Widjaja ◽  
Umi Rofiqah ◽  
Rr Whiny Hardiyati Erlian

One form of economic development efforts for waste utilization in rural communities is to utilize stem sorghum to produce food grade ethanol. Sorghum stem juice with 150 g/L of sugar concentration was fermented using conventional batch process and cell immobilization continuous process with K-carrageenan as a supporting matrix. The microorganism used was Mutated Zymomonas Mobilis to be compared with a mixture of Saccharomyces Cerevisiae and Pichia Stipitis, and a mixture of Mutated Zymomonas Mobilis and Pichia Stipitis. Ethanol in the broth, result of fermentation process, was separated in packed distillation column. Distilate of the column, still contain water and other impurities, was flown into molecular sieve for dehydration and activated carbon adsorption column to remove the other impurities to meet food grade ethanol specification. The packing used in distillation process was steel wool. For batch fermentation, the fermentation using a combination of Saccharomyces Cerevisiae and Pichia Stipitis produced the best ethanol with 12.07% of concentration, where the yield and the productivity were 63.49%, and 1.06 g/L.h, respectively. And for continuous fermentation, the best ethanol with 9.02% of concentration, where the yield and the productivity were 47.42% and 174.27 g/L.h, respectively, is obtained from fermentation using a combination of Saccharomyces Cerevisiae and Pichia Stipitis also. Fermentation using combination microorganism of Saccharomyces Cerevisiae and Pichia Stipitis produced higher concentration of ethanol, yield, and productivity than other microorganisms. Distillation, molecular sieve dehydration and adsorption process is quite successful in generating sufficient levels of ethanol with relatively low amount of impurities.


2011 ◽  
Vol 39 (3) ◽  
pp. 243-248 ◽  
Author(s):  
Ji-Eun Lee ◽  
Sang-Eun Lee ◽  
Woon-Yong Choi ◽  
Do-Hyung Kang ◽  
Hyeon-Yong Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document