Novel hydroxyapatite (HA) dual-scaffold with ultra-high porosity, high surface area, and compressive strength

2007 ◽  
Vol 18 (6) ◽  
pp. 1071-1077 ◽  
Author(s):  
In-Kook Jun ◽  
Young-Hag Koh ◽  
Su-Hee Lee ◽  
Hyoun-Ee Kim
Carbon ◽  
2013 ◽  
Vol 55 ◽  
pp. 291-298 ◽  
Author(s):  
Paul A. Goodman ◽  
H. Li ◽  
Y. Gao ◽  
Y.F. Lu ◽  
J.D. Stenger-Smith ◽  
...  

2021 ◽  
Vol 7 (2) ◽  
pp. 15-19
Author(s):  
S. M. Yusof ◽  
L. P. Teh

In recent years, there has been growing interest in adsorbents with high surface area, high porosity, high stability and high selectivity for CO2 adsorption. By the incorporation of the additive on the supports such as zeolite, silica, and carbon, the physicochemical properties of the adsorbent and CO2 adsorption performance can be enhanced. In this review, we focus on the overview of bifunctional materials (BFMs) for CO2 adsorption. The findings of this study suggests that the high surface area and high porosity of the support provide a good medium for high dispersion and accessibility of additives (amine or metal oxide), enhancing the CO2 adsorption efficiency. The excessive additive however may lead to a decrease of CO2 adsorption performance due to pore blockage and the decrease of active sites for CO2 interactions. The synergistic relationship of the supporting material and additive is significant towards the enhancement of CO2 adsorption.


2020 ◽  
Vol 56 (1) ◽  
pp. 66-69 ◽  
Author(s):  
Bin Wang ◽  
Xiu-Liang Lv ◽  
Jie Lv ◽  
Li Ma ◽  
Rui-Biao Lin ◽  
...  

A highly chemically and thermally stable mesoporous hydrogen-bonded organic framework with a high surface area and a large pore volume has been rationally designed and constructed.


The Analyst ◽  
2021 ◽  
Author(s):  
Qiaoyan Li ◽  
Zhengtao Li ◽  
Yuanyuan Fu ◽  
Igor Clarot ◽  
Ariane Boudier ◽  
...  

Covalent organic frameworks (COFs) is a class of porous materials with high surface area, high porosity, good stability and tunable structure that have been neatly used in the separation area....


Nanomaterials ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 636 ◽  
Author(s):  
Tao Zhang ◽  
Isis Souza ◽  
Jiahe Xu ◽  
Vitor Almeida ◽  
Tewodros Asefa

A series of mesoporous graphitic carbon nitride (mpg-C3N4) materials are synthesized by directly pyrolyzing melamine containing many embedded silica nanoparticles templates, and then etching the silica templates from the carbonized products. The mass ratio of melamine-to-silica templates and the size of the silica nanoparticles are found to dictate whether or not mpg-C3N4 with large surface area and high porosity form. The surfaces of the mpg-C3N4 materials are then decorated with copper (Cu) nanoparticles, resulting in Cu-decorated mpg-C3N4 composite materials that show excellent photocatalytic activity for degradation of tartrazine yellow dye. The materials’ excellent photocatalytic performance is attributed to their high surface area and the synergistic effects created in them by mpg-C3N4 and Cu nanoparticles, including the Cu nanoparticles’ greater ability to separate photogenerated charge carriers from mpg-C3N4.


Lab on a Chip ◽  
2016 ◽  
Vol 16 (2) ◽  
pp. 298-304 ◽  
Author(s):  
Jonas Hansson ◽  
Hiroki Yasuga ◽  
Tommy Haraldsson ◽  
Wouter van der Wijngaart

Synthetic Microfluidic Paper – a novel porous material providing high surface area, repeatable capillary flow rates, and covalent surface chemistry.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Binjie Sun ◽  
Changzheng Wang

Hierarchical CdS spherical aggregates have been fabricated by an assembling strategy starting from nanoparticles, which opens a general way to obtain hierarchical spherical aggregates of different types of materials. The hierarchical CdS spherical aggregates are of high porosity and high surface area, which give rise to unique photoluminescence properties. The desirable properties we report here will spur further developments of novel dopamine photoluminescence sensors based on the high surface area hierarchical CdS spherical aggregates fabricated with our unique assembling strategy. The novel dopamine photoluminescence sensor has a low detection limit of1.0×10−8 M, which is much lower than those reported previously.


2019 ◽  
Vol 824 ◽  
pp. 1-7
Author(s):  
Nutchaporn Ngamthanacom ◽  
Napat Kaewtrakulchai ◽  
Weerawut Chaiwat ◽  
Laemthong Chuenchom ◽  
Masayoshi Fuji ◽  
...  

Waste lignin (WL) obtained from paper mills, was studied for its potential application in preparing carbon nanoparticles (CNPs) with high porosity. This was done by impregnation of 0, 5, 10 and 20% concentrations of phosphoric acid under various carbonization temperatures (600, 700, 800 and 900°C). The physicochemical properties of CNPs were characterized through nitrogen sorption, X-ray diffraction (XRD), Scanning electron microscopy (SEM), and Fourier transforms infrared spectroscopy (FTIR). Nitrogen sorption revealed that the condition using 10% concentration of phosphoric acid treatment at a carbonization temperature of 700°C formed carbon nanoparticles with a highly porous structure (Surface area 27.65 m2/g and pore volume 0.07 cm3/g). Additionally, in order to high surface area, porosity and concentrated carbon nanoparticle.


Sign in / Sign up

Export Citation Format

Share Document