The Comparison of Growth Ability Sweet Waxy Corn with Drip Irrigation Method by Using Elevated Tank

Author(s):  
Thitinun Pongnam ◽  
Banlu Phiachin ◽  
Banjob Chamchong ◽  
Parinya Thaweephun
2021 ◽  
Vol 25 (7) ◽  
pp. 8-12
Author(s):  
Z.G. Lamerdonov ◽  
T.Yu. Khashirova ◽  
S.A. Zhaboev ◽  
L.Zh. Nastueva ◽  
A.А. Shogenov ◽  
...  

The results of experimental studies of the local subsurface irrigation method in comparison with drip irrigation carried out in the laboratory, which showed water savings due to a decrease in evaporation from the soil surface by 10–15 percent are presented. The method of irrigation in closed greenhouse farms using water with a high salt content is described. The paper proposes new patented schematic solutions for protecting plants from frost and pests, describes a multifunctional engineering and reclamation system capable of performing various operations depending on the emerging problems during the growing season.


Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 7
Author(s):  
Musammat Shahinara Begum ◽  
Sujit Kumar Bala ◽  
AKM Saiful Islam

Urbanization and population growth have led to urban areas with a substantial concrete surface compared to adjacent rural areas, creating challenges regarding fresh food, water security, and the need for agricultural land. Climate change affects the rainfall pattern and ground water in urban areas, so the gradual growth of urban rooftop agriculture (URTA) is an increasing trend for the owners of residential buildings. URTA is increasing in the form of private initiatives, but without consideration of efficient water management techniques and application of other related inputs. URTA differs substantially from traditional agriculture in terms of sunshine, thermal regime, the moisture dynamics of a concrete roof top, etc. Considering these aspects of URTA, an effective, efficient, science-based and economically viable irrigation method is necessary to popularize this approach and consequently increase the productivity of crops. With this in mind, the drip irrigation method is considered for the cultivation and determination of water productivity for selected species of plants such as the Bottle Gourd, Tomato, Chili, and Brinjal in the URTA, which was also compared to the traditional irrigation approach. This is why groundwater and green (grey and rain) water were considered as the source of irrigation during the dry season, based on the daily crop evapotranspiration and moisture content of the plant growing medium. For this reason, ET0 of the selected crops was measured using the CROPWAT 8.0 model. The results of this study revealed that the optimum irrigation water requirement of any crop in URTA is around 54% access (ETc), and 46–64% of access irrigation water is used by the traditional method compared to the drip irrigation method. The study reported that with drip irrigation with potable water, the yield was increased by 21.43–22.40% and rain and grey-water also increased yield by 31.87–33.33% compared to container and traditional pipe irrigation. It was also found that the water qualities of mixed water (grey and rainwater) are in an acceptable range limit for irrigation. As a result, urban planners, city dwellers, and researchers can formulate appropriate plans to cultivate different species of plants through this water saving irrigation method using green water, and should explore the concept of water-smart URTA technologies as organic inventions embedded in these results.


Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 315 ◽  
Author(s):  
Jingwei Wang ◽  
Wenquan Niu ◽  
Yuan Li

Alternate drip irrigation (ADI) is a useful irrigation method for water conservation and the regulation of soil quality; however, knowledge about the underlying mechanism of soil-root-bacterium interactions is limited. To determine the mechanism by which ADI transforms soil nutrients and thereby promotes plant growth and to provide a basis for the reasonable selection of drip irrigation methodology, the present study investigated the effects of ADI on the composition and potential function of the bacterial community in tomato rhizosphere soils under greenhouse conditions and analyzed the soil-root-bacterium interactions under ADI. The results revealed that, compared with the soils of the plots treated with surface drip irrigation with plastic film mulching (DI-PFM), the soils of the plots treated with ADI presented an optimized bacterial community structure and optimized soil nitrogen (N) and phosphorus (P) metabolism. The soil available N contents under ADI with lower irrigation limits of 50%, 60%, and 70% of field capacity (A50, A60, and A70 treatments, respectively) were 1.48, 2.19, and 1.91 times greater than those under DI-PFM, respectively; similarly, the soil available P contents were 1.49, 1.65, and 2.91 times greater; the total phosphorus (TP) contents in the tomato roots were 1.06, 1.94, and 1.59 times greater, respectively; and the TP contents in the tomato plants were 1.03, 1.75, and 2.84 times greater, respectively. In addition, the total nitrogen (TN) contents in the tomato roots under ADI with lower irrigation limits of 60% and 70% of field capacity were 1.07 and 1.14 times greater than those under DI-PFM, and the TN contents in the tomato stems were 1.21 and 1.12 times greater than those under DI-PFM. However, compared with DI-PFM, ADI improved tomato yields by 24.23% under only 70% of field capacity. Therefore, ADI significantly enhanced soil-root interactions and stimulated the activation of soil N and P, but only a proper low soil moisture content (SMC) led to significantly increased tomato yields.


Agrica ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 33-36
Author(s):  
Ramesh Verma ◽  
Snehil Dubey ◽  
Abhishek Singh ◽  
Munish Kumar

HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1143A-1143
Author(s):  
Manuel Palada ◽  
Deng Lin Wu

Chili pepper (Capsicumannuum cv. Delicacy) was grown in single- and double-bed rainshelters and irrigated using furrow and drip irrigation to determine effect on yield and efficiency of water and nutrient application in the lowland tropics of southern Taiwan during the hot wet season. The experiment was laid out using a split-plot design with four replications. The main plots were rainshelters (single, double, open field) and the two irrigation methods (furrow and drip) were the subplots. Grafted chili seedlings were transplanted in double rows on raised beds at row spacing of 80 cm and plant spacing of 50 cm. The furrow-irrigated crop was applied with basal N-P2O5-K2O at the rate of 180–180–180 kg·ha-1 and 240–150–180 kg·ha-1 of N-P2O5-K2O as sidedressing. The drip-irrigated crop received half of the total rate applied for the furrow-irrigated crop. Significant differences (P < 0.05) in marketable yield were observed between rainshelter treatments. Highest yield (42.2 t·ha-1) was produced from the single-bed rainshelter, and crops grown under double-bed rainshelters produced the lowest marketable yield. Irrigation method did not significantly influence marketable yield, but crops grown under drip irrigation produced a higher yield than furrow-irrigated crops. Nutrient uptake by plants grown under drip irrigation was also higher (P < 0.05) than for furrow-irrigated crops. Water use efficiency was 60.7% higher in drip-irrigated plots. Results indicate that in high rainfall vegetable production areas, drip irrigation minimizes nutrient loss through leaching and maximizes efficiency of fertilizer use.


2021 ◽  
pp. 49-56
Author(s):  
Gulzinat Aldambergenova ◽  
◽  
Asylkhan Shomantaev ◽  
Mustafa Mustafayev ◽  
◽  
...  

The article explores the method of drip irrigation of agricultural crops, which provides a high coefficient of irrigation water (80–95%) and land (95%) use. This method helps to significantly save irrigation water by reducing losses for evaporation and filtration outside the root system zone, which eliminates surface runoff, unevenness of irrigation and creates the ability to maximize the use of irrigated areas for agricultural crops. The use of drip irrigation in vegetable production in the south of Kazakhstan since 2000 has radically changed the approach to the “water – soil – plant” complex. The authors believe that a metered feeding regimen would form a new approach to irrigation of agricultural crops, such as rice. Rice (Oryza sativa L.) as a food culture serves as one of the products consumed in food. It is grown in 120 countries on the area of more than 165 million hectares. Rice, unlike other agricultural crops, has a high biological plasticity and adaptive ability, which in modern agriculture allows it to be cultivated in a wide range of climatic conditions and irrigation methods, such as flooding, periodic irrigation and dry conditions. In world practice a continuous flooding of checks was the most widespread method of watering. This technology consumes about 50% of the total volume of irrigation water or 30% of the world’s fresh water reserves. The irrigation rate of rice cultivated with the use of this technology is in the range of 20–25 thousand m3/ha, which significantly exceeds the biological water consumption of rice agrocenosis. A significant part of the irrigation water is lost for filtration, discharges and lateral outflows. Currently, the use of drip irrigation method in rice fields is poorly studied. The research is aimed at substantiating the technology of rice cultivation using a low-pressure drip irrigation method in the conditions of Kyzylorda region


2018 ◽  
Vol 18 (1) ◽  
pp. 33
Author(s):  
Muhamad Idrus ◽  
Andre Velthuzend ◽  
Didik Kuswadi ◽  
Suprapto Suprapto ◽  
I Gde Darmaputra

This research was conducted in PT Nusantara Tropical Farm ( PT NTF) at Jepara, Margosakti, Labuhan Ratu, East Lampung District.  The plants which were cultivated in PT NTF such as Cavendish banana, pineapple, crystal guava, and naga fruit. The irrigation being used to irrigated cavendish banana is drip irrigation method with Aries emitter type. Watering method of drip irrigation system that used for Cavendish banana is cross watering and block watering methods. The goals of this research were to determine the performance of drip irrigation line for Cavendish banana by using both kinds of watering method.  The performance indicator of irrigation system included the conveyance efficiency, the uniformity coefficient, the length time irrigation, and the amount of fuel consumption for diesel machine of a pump. The result of this research showed that the value of the conveyance efficiency of drip irrigation with cross watering method was 90,2% and 80,0% for block watering method. The uniformity coefficient on cross watering method was 87,55% and 97,10% for block watering method.  The amount of fuel consumption for 10,46 ha area with cross watering method was 29,49 l  and 40,52 l  for 10,2 ha area with block watering method.


2012 ◽  
Vol 104 ◽  
pp. 210-220 ◽  
Author(s):  
Shuqin Wan ◽  
Yanping Jiao ◽  
Yaohu Kang ◽  
Wei Hu ◽  
Shufang Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document