Nitrogen and Phosphorus Absorption and Yield of Tomato Increased by Regulating the Bacterial Community under Greenhouse Conditions via the Alternate Drip Irrigation Method

Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 315 ◽  
Author(s):  
Jingwei Wang ◽  
Wenquan Niu ◽  
Yuan Li

Alternate drip irrigation (ADI) is a useful irrigation method for water conservation and the regulation of soil quality; however, knowledge about the underlying mechanism of soil-root-bacterium interactions is limited. To determine the mechanism by which ADI transforms soil nutrients and thereby promotes plant growth and to provide a basis for the reasonable selection of drip irrigation methodology, the present study investigated the effects of ADI on the composition and potential function of the bacterial community in tomato rhizosphere soils under greenhouse conditions and analyzed the soil-root-bacterium interactions under ADI. The results revealed that, compared with the soils of the plots treated with surface drip irrigation with plastic film mulching (DI-PFM), the soils of the plots treated with ADI presented an optimized bacterial community structure and optimized soil nitrogen (N) and phosphorus (P) metabolism. The soil available N contents under ADI with lower irrigation limits of 50%, 60%, and 70% of field capacity (A50, A60, and A70 treatments, respectively) were 1.48, 2.19, and 1.91 times greater than those under DI-PFM, respectively; similarly, the soil available P contents were 1.49, 1.65, and 2.91 times greater; the total phosphorus (TP) contents in the tomato roots were 1.06, 1.94, and 1.59 times greater, respectively; and the TP contents in the tomato plants were 1.03, 1.75, and 2.84 times greater, respectively. In addition, the total nitrogen (TN) contents in the tomato roots under ADI with lower irrigation limits of 60% and 70% of field capacity were 1.07 and 1.14 times greater than those under DI-PFM, and the TN contents in the tomato stems were 1.21 and 1.12 times greater than those under DI-PFM. However, compared with DI-PFM, ADI improved tomato yields by 24.23% under only 70% of field capacity. Therefore, ADI significantly enhanced soil-root interactions and stimulated the activation of soil N and P, but only a proper low soil moisture content (SMC) led to significantly increased tomato yields.

Author(s):  
N. L. Rajesh ◽  
Kirana Kumara ◽  
V. Rajesh ◽  
H. V. Rudramurthy ◽  
U. Satish Kumar ◽  
...  

A detailed land resource study of Gadagi-2 micro watershed, Lingasusgur taluk, Raichur district, Karnataka state, India, was carried out during summer 2017, at the scale of 1:8000 using cadastral map overlaid on IRS Cartosat-1 merged with LISS IV satellite imagery. Initially, a detailed survey was carried out to derive soil phase units based on land surface and profile characters. Five soil series were identified and mapped into five soil phase units. It is revealed that soil were non-saline with EC <4 dSm-1. The OC, available P2O5 and available K2O content of the study area were low to medium, and soil available N and S status were low in all the five soil phases. HEGiC2 soil phase was classified as class III land capability class with limitation of rooting and slope. Rest of the soil phases viz., KALhC2g1S1R1, VKRhD2g2S2R3, CHRhC2g1S1R1 and BHGhE2g2S2R2 were classified as class IV land capability with limitation of slope, texture, erosion, rooting condition and organic carbon. Suitability for horticulture and field crops were derived based on soil phase, site characteristics and climatic regimes. Proposed crop plan for field crops and horticulture crops for all five soil phase units was prepared. Suitable soil and water conservation measures such as deep and wider size pit and drip irrigation for fruit crops and forest trees, cultivation on raised beds with mulches and drip irrigation, graded bunds and strengthening of field bunds, crescent bunds were found suitable for vegetables, flowers and sole crops based on the soil phase characteristics.


2021 ◽  
Vol 25 (7) ◽  
pp. 8-12
Author(s):  
Z.G. Lamerdonov ◽  
T.Yu. Khashirova ◽  
S.A. Zhaboev ◽  
L.Zh. Nastueva ◽  
A.А. Shogenov ◽  
...  

The results of experimental studies of the local subsurface irrigation method in comparison with drip irrigation carried out in the laboratory, which showed water savings due to a decrease in evaporation from the soil surface by 10–15 percent are presented. The method of irrigation in closed greenhouse farms using water with a high salt content is described. The paper proposes new patented schematic solutions for protecting plants from frost and pests, describes a multifunctional engineering and reclamation system capable of performing various operations depending on the emerging problems during the growing season.


2013 ◽  
Vol 742 ◽  
pp. 272-277
Author(s):  
Liang Shan Feng ◽  
Zhan Xiang Sun ◽  
Jia Ming Zheng

In this study, the results showed that water is the most important factor to affect crop yields and optimum soil moisture is lower under the conditions of peanut-and-millet interplanting. Thus, peanut-and-millet interplanting is generally able to fit most of the semi-arid region. In the interaction of various factors, the coupling effect of water and phosphorus was stronger than the coupling effect of fertilizers, following by the coupling effect of water and nitrogen. Among peanuts factors of water, nitrogen, and multi-factorial interaction of water, nitrogen, and phosphorus, water and nitrogen showed a negative effect, whereas the two-factor interactions had a positive effect. There were some differences between peanut and millet in the need for water and fertilizer, in which peanut required more nitrogen and millet needed slightly higher soil moisture and phosphorus. When other factors were in rich level, both of the optimal value for single factors of water, nitrogen, and phosphorus and the optimal value for two-factor interactions of water-nitrogen, water-phosphorus, and nitrogen-phosphorus, were higher than the optimal value for the interaction of water, nitrogen, and phosphorus. The tiny demand difference on moisture in peanut-millet interplanting could be compromised by configuring a reasonable interplanting population structure and the corresponding demand difference on fertilizer could be resolved by uneven crop planting strips. Under the condition of water-nitrogen-phosphorus interaction, the soil moisture content optimal for peanut accounted for 57.3% of the field capacity, and the related appropriate application rates of nitrogen and phosphorus were 0.98 g/pot (81.18 kg/hm2) and 0.39g/pot (32.18 kg/hm2), respectively. Likewise, the soil moisture content optimal for millet was 59.1% of the field capacity, and the counterpart appropriate application rates of nitrogen and phosphorus were 0.57 g/pot (47.03 kg/hm2) and 0.45g / pot (37.13 kg/hm2), respectively.


Author(s):  
André L. B. de O. Silva ◽  
Regina C. M. Pires ◽  
Rafael V. Ribeiro ◽  
Eduardo C. Machado ◽  
Gabriel C. Blain ◽  
...  

ABSTRACT The present study aimed to evaluate the development, yield and quality of four sugarcane cultivars fertigated by subsurface drip system. The experiment was carried out in Campinas-SP, Brazil, from January 2012 to November 2013, with the cultivars SP79-1011, IACSP94-2101, IACSP94-2094 and IACSP95-5000 subjected to daily irrigations. The irrigations depths were applied to bring soil moisture to field capacity. Soil moisture was monitored using soil moisture probes. Samples were collected along the crop cycle in order to evaluate crop development and yield, at the end of the first and second ratoons. Stalk height showed good correlation for the estimation of crop yield, with R2 equal to or higher than 0.96. The cultivar IACSP95-5000 showed the highest yield in the first ratoon. In the second ratoon the highest yield was observed in IACSP94-2101, followed by IACSP95-5000 and SP79-1011. Considering the yield results associated with the technological analysis, such as soluble solids content and apparent sucrose, the cultivar IACSP95-5000 excelled the others in the cultivation under subsurface drip irrigation.


2016 ◽  
Author(s):  
Jinniu Wang ◽  
Bo Xu ◽  
Yan Wu ◽  
Jing Gao ◽  
Fusun Shi

Abstract. Litters of reproductive organs have been rarely studied, despite their role in allocating nutrients for offspring reproduction. This study determines the mechanism through which flower litters efficiently increase the available soil nutrient pool. Field experiments were conducted to collect plant litters and calculate biomass production in an alpine meadow of the eastern Tibetan Plateau. Carbon, nitrogen, phosphorus, lignin, cellulose, and their relevant ratios of litters were analyzed to identify their decomposition features. A pot experiment was performed to determine the effects of litter addition on soil nutrition pool by comparison between the treated and control samples. Litter-bag method was used to verify decomposition rates. The flower litters of phanerophyte plants were comparable with non-flower litters. Biomass partitioning of other herbaceous species accounted for 10%–40% of the aboveground biomass. Flower litter possessed significantly higher N and P levels but less C/N, N/P, lignin/N, and lignin and cellulose concentrations than leaf litter. Flower litter fed soil nutrition pool more efficiently because of their faster decomposition rate and higher nutrient contents. Litter-bag experiment confirmed that the flower litters of Rhododendron przewalskii and Meconopsis integrifolia decomposes approximately three times faster than mixed litters within 50 days. Moreover, the findings of the pot experiment indicated that flower litter addition significantly increased the available nutrient pool. Flower litter influenced nutrition cycling in alpine ecosystems, as evident by its non-ignorable production and significantly faster decomposition. The underlying mechanism can enrich nutrients, which return to the soil, and non-structural carbohydrates, which feed and enhance the transitions of soil microorganisms.


Author(s):  
S. Anitha ◽  
K. T. Gurumurthy Ganapathi

An investigation was undertaken in Tommaladahalli (566.13 ha) micro-watershed of Tarikere taluk, Chikkamagaluru district of Karnataka to assess available nutrient status in the surface soils. About 118 surface soil samples were collected grid wise by using cadastral map at 250 m grid interval and were analyzed for their fertility status using standard procedures. Soil fertility maps were prepared by means of interpolation method called Krigging. The results revealed that the pH, electrical conductivity, and organic carbon were ranged from 5.37 to 9.06, 0.065 to 0.466 dS m-1 and 0.33 to 1.62 per cent respectively. The available N, P2O5, K2O were ranged from 175.6 to 545.6 kg ha-1, 11.8 to 61.1 kg ha-1 and 122.7 to 491.4 kg ha-1, respectively. The available nitrogen and phosphorus were low to medium, where as potassium content was medium to high in the entire study area. Micronutrients viz. zinc, iron and boron were sufficient and were ranged from 0.34 to 1.17 mg kg-1, 2.03 to 21.86 mg kg-1 and 0.30 to 0.89 mg kg-1 respectively.


2019 ◽  
Vol 221 ◽  
pp. 50-59 ◽  
Author(s):  
Meng-Jun Tang ◽  
Qiang Zhu ◽  
Feng-Min Zhang ◽  
Wei Zhang ◽  
Jie Yuan ◽  
...  

2020 ◽  
Vol 12 (6) ◽  
pp. 2338
Author(s):  
Jingwei Wang ◽  
Yuan Li ◽  
Wenquan Niu

The objective of this study was to reveal the regulatory mechanisms underlying the soil bacterial community of subsurface drip irrigation (SDI). The effect of different buried depths of drip tape (0, 10, 20, 30 cm) on the soil bacterial community in a tomato root-zone was investigated using high-throughput technology. Furthermore, the mutual effects of root growth, tomato yield and soil bacterial community were also analyzed to explore the response of root-soil interaction to the buried depth of drip tape. The results indicated that SDI (i.e., 10, 20 and 30 cm buried depths of drip tape) changed the soil bacterial community structure compared to surface drip irrigation (a 0 cm buried depth of drip tape). SDI with a 10 cm buried depth of drip tape significantly reduced the relative abundances of Proteobacteria, Chloroflexi, Gemmatimonadetes, Acidobacteria, Firmicutes and Planctomycetes, but significantly increased the relative abundances of Actinobacteria, Candidate_division_TM7 and Bacteroidetes. SDI of 20 and 30 cm buried depth significantly decreased the relative abundances of Roteobacteri, Actinobacteria and Planctomycetes, however, increased the relative abundances of Chloroflexi, Gemmatimonadetes, Acidobacteria, Firmicutes, Candidate_division_TM7 and especially some trace bacteria (for example Nitrospirae). Furthermore, under 20 cm or 30 cm of buried depth, the abundances of nitrogen metabolism and phosphonate and phosphinate metabolism based on the PICRUSt (Reconstruction of Unobserved States) method were significantly improved as well as soil porosity and root forks at 0-10 cm. These changes strengthened root-soil interaction and improved tomato yield per plant by 22.47% and 19.38% under 20 cm and 30 cm of buried depth, respectively, compared to surface drip irrigation. Therefore, the responses of bacterial community and root-soil interaction to drip tape buried depth of 20 cm and 30 cm are proven to be beneficial for the increasing of tomato production.


Sign in / Sign up

Export Citation Format

Share Document