scholarly journals Antibacterial activity and phytochemical evaluation of the leaf root and stem bark extracts of parinari curatellifolia (planch. ex benth)

2014 ◽  
Vol 2 (2) ◽  
pp. 178 ◽  
Author(s):  
Ugoh Chukwudi ◽  
Fatokun Ayodeji ◽  
Jimba Amos ◽  
Olajide Olawunmi
2019 ◽  
Vol 3 (1) ◽  
pp. 17-21 ◽  
Author(s):  
Halilu Mshelia ◽  
◽  
Chinenye Ugwah-Oguejiofor ◽  
Natasha October ◽  
Kabiru Abubakar ◽  
...  

Author(s):  
ANNAMALAI MADURAM ◽  
RAJU KAMARAJ

Objectives: The objectives of the study were to study the antibacterial activity for the various extracts of Clausena dentata against human pathogens. Clausena (Rutaceae) is a genus of about 23 species of unarmed trees and shrubs. The stem bark of C. dentata is used in veterinary medicine for the treatment of wounds and sprains. Even though C. dentata has a lot of potential medical uses, the study of microbiological properties is very scarce. Methods: The plant C. dentata was collected from Kadagaman, near Tiruvannamalai, Tamil Nadu, India, and authenticated by Centre for Advanced Study in Botany, University of Madras, Chennai. The dry powder of stem bark was extracted with hexane, chloroform, and methanol. The extracts were subjected to qualitative phytochemical screening and antibacterial activity against human pathogenic bacteria such as Escherichia coli, Salmonella Typhi, Klebsiella pneumonia, Vibrio cholerae, and Staphylococcus aureus and compared with ciprofloxacin. Results: Qualitative chemical tests revealed the presence of various phytochemicals such as alkaloids, glycosides, carbohydrate, proteins and amino acids, phytosterols, and volatile oil. The antibacterial activity result reveals that all the extracts were are more active against V. cholerae. The activity against Pseudomonas aeruginosa was mild. Conclusion: The activity against V. cholerae was comparable with that of 5 μg/mL ciprofloxacin at the concentration of C. dentata 40 μg/mL. The orders of antibacterial activity against human pathogenic bacteria are hexane, methanol, and chloroform extract of C. dentata.


Author(s):  
Arunodaya H. S. ◽  
Krishna V. ◽  
Shashikumar R. ◽  
Girish Kumar K.

<p><strong>Objective: </strong>To evaluate the chemical composition, antibacterial and antioxidant properties of stem bark essential oil of <em>Litsea glutinosa </em>C. B. Rob.</p><p><strong>Methods: </strong>The essential oil isolated from stem bark of <em>L. glutinosa </em>and their chemical composition was analyzed by gas chromatography coupled with mass spectrometry detector. The <em>in vitro </em>antibacterial activity of the stem bark essential oil was investigated against eight human pathogenic bacterial clinical isolates using agar disc diffusion method and MIC value was determined by modified resazurin microtitre-plate assay. The antioxidant activity of essential oil was measured by 2, 2-diphenyl-1-picrylhydrazyl radical (DPPH), 2, 2-azinobis-3-ethylbenzothiazoline-6-sulphonate radical cation (ABTS) and β-carotene bleaching assay.</p><p><strong>Results: </strong>GC-MS analysis of stem bark essential oil resulted in the identification of 37 compounds, off which 9,12-octadecadienoic acid (62.57%), hexadecanoic acid (12.68%), stigmast-5-en-3-ol (6.87%) and vitamin E (2.51%) were the main constituents representing 84.63% of the oil. The determination of <em>in vitro</em> antibacterial activity of stem bark essential oil resulted in significant inhibition zone (15.00±0.57 mm) and MIC value (0.15±0.15×10<sup>-2</sup> mg/ml) against the pathogenic bacteria <em>Vibrio cholera</em> followed by <em>Pseudomonas aeruginosa</em> and <em>Salmonella typhi. </em>The results of DPPH radical scavenging (IC<sub>50</sub>:4.540±0.06 µg/ml), ABTS (IC<sub>50</sub>:256.02±0.06 µg/ml) and β-carotene bleaching assay (%I: 78.51±0.42 <strong>%</strong>) showed significant <em>in vitro</em> antioxidant property.</p><p><strong>Conclusion: </strong><em>L. glutinosa</em> stem bark essential oil showed potential antibacterial activity against the <em>Vibrio cholera</em>. The results of this investigation supported the ethnomedical claim of essential oil as a demulcent, antidiarrheal and antioxidant drug.</p>


2018 ◽  
Vol 6 (6) ◽  
pp. 1-6
Author(s):  
Yao KANGA ◽  
CAMARA Djeneb ◽  
KOUASSI Kouadio Aubin ◽  
ZIRIHI Guédé Noël

The emergence of multi-drug resistant strains and limitations of present antimicrobial drugs have led to continuous search for natural products as curative agents for Anti-methicillin resistantinfections. The aim of this study was to evaluate antibacterial activity of an ethanolic extract from Albizia lebbeckstem bark against Anti-methicillin resistant. Methods and Results : The methods of dissemination swab on muller-hinton agar and double dilution were used to evaluate the antibacterial activity of 70 % ethanolic extract of stem bark of Albizia lebbeck.All multi-resistant strains of Staphylococcus aureus and the reference strain (ATCC 25923) were sensitive to 70 % ethanolic extract of the stem bark of Albizia lebbeck. The MBCvary from 0,49 mg/mL to 2mg/mL. Also, the phytochemical screening of this extract revealed the presence of  Polyphenols, Gallic tannins, Catechin tanninsand Flavonoids. These findings confirm that an 70 % ethanolic extract from Albizia lebbeck stem bark inhibited growth of Anti-methicillin resistant at low concentration and could be utilised as an alternative Anti-methicillin resistantagent.


Author(s):  
Mouth cavity Microfora. ◽  
Teniola Temitayo Mary

The aim of the study is to evaluate and compare the antibacterial activity of ethanolic stem extract of (Wild African nutmeg) Pycnanthus angolensis (Welw.) and some commercially available toothpaste against bacteria isolated from the hidden resident mouth cavity microfora. Bacteria were isolated from swabs of apparently healthy individuals and were identified using Staining procedure biochemical tests and the use of Bergey’s manual of bacteria identification  The assay for antibacterial activity of Pycnanthus angolensis stem bark extract and the four toothpastes were determined using agar well diffusion method. The Gram positive bacteria isolated were Streptococcus sangus, Streptococcus ratti, Stomatococcus mucilaginous., Peptostreptococcus  sp., and Streptococcus mutans and the Gram negative bacteria were Veillonella atypical, Veillonella parvula, Veillonella dispar and Acidiaminococcus sp. Oral B toothpaste showed maximum efficacy of inhibition with inhibition zone diameter as wide as 20 mm at 100 mg/ml. Percentage frequency distribution of antibacterial activity of conventional toothpaste (Close-up) against hidden resident mouth cavity microfora depicts Acidaminococcus sp.13%, Veillonella parvula (10%), Veillonella dispar (12%), Peptostreptococcus  sp.(12%), Stomatococcus mucilaginous.(9%), Streptococcus ratti (13%), Veillonella atypical (11%), Streptococcus sangus (9%) and Streptococcus mutans (11%), Percentage frequency distribution of antibacterial activity of conventional toothpaste (Oral B toothpaste) against hidden resident mouth cavity microfora reveals Acidaminococcus sp.(11%,) Veillonella dispar (11%), Veillonella parvula (10%), Peptostreptococcus sp. (12%), Stomatococcus mucilaginous.(15%), Streptococcus ratti (11%), Veillonella atypical (8%), Streptococcus sangus (10%),  and Streptococcus mutans (12%), Percentage frequency distribution  of antibacterial activity of conventional toothpaste (MyMy toothpaste) against hidden resident mouth cavity microfora depicts Acidaminococcus sp.(12%), Veillonella dispar (9%), Veillonella parvula (8%), Peptostreptococcus sp.(10%), Stomatococcus mucilaginous.(16%), Streptococcus ratti (9%), Veillonella atypical (15%),Streptococcus sangus (9%) and Streptococcus mutans (12%), Percentage frequency distribution of antibacterial activity of conventional toothpaste (Olive toothpaste) against hidden resident mouth cavity microfora shows Acidaminococcus sp.(9%), Veillonella dispar (10%), Veillonella parvula (10%), Peptostreptococcus sp.(12%), Stomatococcus mucilaginous.(13%), Streptococcus ratti (10%) ,Veillonella atypical (17%), Streptococcus sangus (7%),  and Streptococcus mutans (12%). Pycnanthus Angolensis stem bark extract inhibited the growth of the oral bacterial isolates with of zones of inhibition diameter ranging from 6 mm to 17 mm at a concentration of 100mg/ml. Secondary metabolite (Phytochemical) screening shows the presence of flavonoids, tannins, saponins, alkaloids, reducing sugars, steroid, phenol, terpenoid, pyrrolozidine alkaloid, glycoside and cardiac glycoside with glycoside and terpenoid most present. However, anthraquinones and volatile oil were absent. With menial antibacterial activity, P. angolensis can be use in the formulation of herbal toothpaste. It should be advocated that Pycnanthus angolensis should be added to our convention toothpaste to improve the functional ingredient of the toothpaste and Plant-based traditional knowledge has become a recognized tool in search for new sources of drugs. It is clear that the use of these herbal plants can offer a platform for further research.


2010 ◽  
Vol 25 (1) ◽  
pp. 46-48 ◽  
Author(s):  
J. C. Chukwujekwu ◽  
F. R. Van Heerden ◽  
J. Van Staden

2008 ◽  
Vol 9 (1) ◽  
pp. 63-67 ◽  
Author(s):  
U.A. Stephen ◽  
F. Abiodun ◽  
O. Osahon ◽  
E. Ewaen

Sign in / Sign up

Export Citation Format

Share Document