scholarly journals A2CDC: Area Coverage, Connectivity and Data Collection in Wireless Sensor Networks

2019 ◽  
Vol 10 (4) ◽  
pp. 20 ◽  
Author(s):  
Alain Bertrand Bomgni ◽  
Garrik Brel Jagho Mdemaya

Wireless sensor networks are increasingly being deployed in areas where several types of information need to be harvested. Monitoring a given area is one of the main goals of this technology. This consists in deploying sensor nodes in the Area of Interest (AoI) in order to detect any event occurring in this area, collect information and send them to the base station. However, in this type of configuration, the quantity and the quality of data collected are important factors in making better decisions by the end user. It therefore becomes crucial to deploy sensors in the AoI so that the latters can cover as much as possible the AoI, and propose mechanism to collect and send data to the base station while minimizing the energy consumption of the sensors. In this paper, we bring into focus a solution (A2CDC) to resolve this problem which performs in two main stages: in the first stage, we propose an algorithm that guarantees a maximal coverage of the AoI after a random deployment of static sensors and mobile sensors; and in the second stage, we propose a node activity scheduling that minimizes energy consumption of both static and mobile nodes while sending collected data to the base station. Compared to many other algorithms in the literature, our solution is better in term of coverage percentage of the AoI, data received by the base station and in term of energy minimization.

Wireless Sensor Networks (WSN) consists of a large amount of nodes connected in a self-directed manner. The most important problems in WSN are Energy, Routing, Security, etc., price of the sensor nodes and renovation of these networks is reasonable. The sensor node tools included a radio transceiver with an antenna and an energy source, usually a battery. WSN compute the environmental conditions such as temperature, sound, pollution levels, etc., WSN built the network with the help of nodes. A sensor community consists of many detection stations known as sensor nodes, every of which is small, light-weight and portable. Nodes are linked separately. Each node is linked into the sensors. In recent years WSN has grow to be an essential function in real world. The data’s are sent from end to end multiple nodes and gateways, the data’s are connected to other networks such as wireless Ethernet. MGEAR is the existing mechanism. It works with the routing and energy consumption. The principal problem of this work is choosing cluster head, and the selection is based on base station, so the manner is consumes energy. In this paper, develop the novel based hybrid protocol Low Energy Aware Gateway (LEAG). We used Zigbee techniques to reduce energy consumption and routing. Gateway is used to minimize the energy consumption and data is send to the base station. Nodes are used to transmit the data into the cluster head, it transmit the data into gateway and gateway compress and aggregate the data then sent to the base station. Simulation result shows our proposed mechanism consumes less energy, increased throughput, packet delivery ration and secure routing when compared to existing mechanism (MGEAR).


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4072
Author(s):  
Tanzila Saba ◽  
Khalid Haseeb ◽  
Ikram Ud Din ◽  
Ahmad Almogren ◽  
Ayman Altameem ◽  
...  

In recent times, the field of wireless sensor networks (WSNs) has attained a growing popularity in observing the environment due to its dynamic factors. Sensor data are gathered and forwarded to the base station (BS) through a wireless transmission medium. The data from the BS is further distributed to end-users using the Internet for their post analysis and operations. However, all sensors except the BS have limited constraints in terms of memory, energy and computational resources that degrade the network performance concerning the network lifetime and trustworthy routing. Therefore, improving energy efficiency with reliable and secure transmissions is a valuable debate among researchers for critical applications based on low-powered sensor nodes. In addition, security plays a significant cause to achieve responsible communications among sensors due to their unfixed and variable infrastructures. Keeping in view the above-mentioned issues, this paper presents an energy-aware graph clustering and intelligent routing (EGCIR) using a supervised system for WSNs to balance the energy consumption and load distribution. Moreover, a secure and efficient key distribution in a hierarchy-based mechanism is adopted by the proposed solution to improve the network efficacy in terms of routes and links integrity. The experimental results demonstrated that the EGCIR protocol enhances the network throughput by an average of 14%, packet drop ratio by an average of 50%, energy consumption by an average of 13%, data latency by an average of 30.2% and data breaches by an average of 37.5% than other state-of-the-art protocols.


Author(s):  
Dhruvi Patel ◽  
Arunita Jaekel

Wireless sensor networks (WSN) consist of sensor nodes that detect relevant events in their vicinity and relay this information for further analysis. Considerable work has been done in the area of sensor node placement to ensure adequate coverage of the area of interest. However, in many applications it may not be possible to accurately place individual sensor nodes. In such cases, imprecise placement can result in regions, referred to as coverage holes, that are not monitored by any sensor node. The use of mobile nodes that can ‘visit' such uncovered regions after deployment has been proposed in the literature as an effective way to maintain adequate coverage. In this paper, the authors propose a novel integer linear programming (ILP) formulation that determines the paths the mobile node(s) should take to realize the specified level of coverage in the shortest time. The authors also present a heuristic algorithm that can be used for larger networks.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 784 ◽  
Author(s):  
Jiayao Wang ◽  
Olamide Tawose ◽  
Linhua Jiang ◽  
Dongfang Zhao

The wireless sensor network (WSN) is mainly composed of a large number of sensor nodes that are equipped with limited energy and resources. Therefore, energy consumption in wireless sensor networks is one of the most challenging problems in practice. On the other hand, data fusion can effectively decrease data redundancy, reduce the amount of data transmission and energy consumption in the network, extend the network life cycle, improve the utilization of bandwidth, and thus overcome the bottleneck on energy and bandwidth consumption. This paper proposes a new data fusion algorithm based on Hesitant Fuzzy Entropy (DFHFE). The new algorithm aims to reduce the collection of repeated data on sensor nodes from the source, and strives to utilize the information provided by redundant data to improve the data reliability. Hesitant fuzzy entropy is exploited to fuse the original data from sensor nodes in the cluster at the sink node to obtain higher quality data and make local decisions on the events of interest. The sink nodes periodically send local decisions to the base station that aggregates the local decisions and makes the final judgment, in which process the burden for the base station to process all the data is significantly released. According to our experiments, the proposed data fusion algorithm greatly improves the robustness, accuracy, and real-time performance of the entire network. The simulation results demonstrate that the new algorithm is more efficient than the state-of-the-art in terms of both energy consumption and real-time performance.


2014 ◽  
Vol 614 ◽  
pp. 472-475 ◽  
Author(s):  
Jin Gang Cao

Due to limited energy, computing ability, and memory of Wireless sensor Networks(WSN), routing issue is one of the key factors for WSN. LEACH is the first clustering routing protocol, which can efficiently reduce the energy consumption and prolong the lifetime of WSN, but it also has some disadvantage. This paper proposed an improvement based LEACH, called LEACH-T. According to different number of clusters, LEACH-T uses variable time slot for different clusters in steady-state phase, and single-hop or multi-hop to transmit data between cluster heads and Base Station. Also it considered residual energy of sensor nodes and the optimal number of clusters during selection of the cluster heads. The simulation results show that LEACH-T has better performance than LEACH for prolonging the lifetime and reducing the energy consumption.


Author(s):  
Mohammed Réda El Ouadi ◽  
Abderrahim Hasbi

The rapid development of connected devices and wireless communication has enabled several researchers to study wireless sensor networks and propose methods and algorithms to improve their performance. Wireless sensor networks (WSN) are composed of several sensor nodes deployed to collect and transfer data to base station (BS). Sensor node is considered as the main element in this field, characterized by minimal capacities of storage, energy, and computing. In consequence of the important impact of the energy on network lifetime, several researches are interested to propose different mechanisms to minimize energy consumption. In this work, we propose a new enhancement of low-energy adaptive clustering hierarchy (LEACH) protocol, named clustering location-based LEACH (CLOC-LEACH), which represents a continuity of our previous published work location-based LEACH (LOC-LEACH). The proposed protocol organizes sensor nodes into four regions, using clustering mechanism. In addition, an efficient concept is adopted to choose cluster head. CLOC-LEACH considers the energy as the principal metric to choose cluster heads and uses a gateway node to ensure the inter-cluster communication. The simulation with MATLAB shows that our contribution offers better performance than LEACH and LOC-LEACH, in terms of stability, energy consumption and network lifetime.


Author(s):  
Mekkaoui Kheireddine ◽  
Rahmoun Abdellatif

Sensor networks are composed of miniaturized wireless sensor nodes with limited capacity and energy source. Generally, these sensor networks are used, in many applications, to monitor inaccessible environments (battlefields, volcano monitoring, animal tracking…), hence the impossibility to replace or to recharge the batteries. As sensors may be deployed in a large area, radio transceivers are the most energy consuming of sensor nodes, which means that their usage needs to be very efficient in order to maximize node life, which leads us to maximize the network's life. In wireless sensor networks and in order to transmit its data, a node can route its messages towards destination, generally the base station, either by using small or large hops, so optimizing the hop length can extend significantly the lifetime of the network. This chapter provides a simple way to verify, which makes the energy consumption minimal by choosing proper hop length.


2020 ◽  
Vol 12 (1) ◽  
pp. 205-224
Author(s):  
Anshu Kumar Dwivedi DUBEY

Purpose ”“ In the recent scenario, there are various issues related to wireless sensor networks such as clustering, routing, packet loss, network strength. The core functionality of primarily wireless sensor networks is sensor nodes that are randomly scattered over a specific area. The sensor senses the data and sends it to the base station. Energy consumption is an important issue in wireless sensor networks. Clustering and cluster head selection is an important method used to extend the lifetime of wireless sensor networks. The main goal of this research article is to reduce energy consumption using a clustering process such as CH determination, cluster formation, and data dissemination.   Methodology/approach/design ”“ The simulation in this paper was finished utilizing MATLAB programming methodology and the proposed technique is contrasted with the LEACH and MOD-LEACH protocols.   Findings ”“ The simulation results of this research show that the energy consumption and dead node ratio are improved of wireless sensor networks as compared to the LEACH and MOD-LEACH algorithms.   Originality/value ”“ In the wireless sensor network there are various constraints energy is one of them. In order to solve this problem use CH selection algorithms to reduce energy consumption and consequently increase network lifetime.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Subramaniam Sumithra ◽  
T. Aruldoss Albert Victoire

Due to large dimension of clusters and increasing size of sensor nodes, finding the optimal route and cluster for large wireless sensor networks (WSN) seems to be highly complex and cumbersome. This paper proposes a new method to determine a reasonably better solution of the clustering and routing problem with the highest concern of efficient energy consumption of the sensor nodes for extending network life time. The proposed method is based on the Differential Evolution (DE) algorithm with an improvised search operator called Diversified Vicinity Procedure (DVP), which models a trade-off between energy consumption of the cluster heads and delay in forwarding the data packets. The obtained route using the proposed method from all the gateways to the base station is comparatively lesser in overall distance with less number of data forwards. Extensive numerical experiments demonstrate the superiority of the proposed method in managing energy consumption of the WSN and the results are compared with the other algorithms reported in the literature.


2020 ◽  
Vol 16 (10) ◽  
pp. 155014772096299
Author(s):  
Lu Sixu ◽  
Wu Muqing ◽  
Zhao Min

Recently, wireless sensor networks play an important role in our life. Researchers give more and more attention to the design of the routing algorithm. Cluster routing is the most popular routing protocol in wireless sensor networks. However, hotspot problem always exists. Unequal cluster routing is an effective method to solve this problem. In these protocols, nodes closer to base station have the smaller cluster size than other sensor nodes. It will reduce the relay pressure of the node which is near to the base station. The development of the software-defined network optimizes the performance of wireless sensor networks. In this article, we propose a software-defined and fuzzy-based multi-hop unequal cluster routing protocol. It adopts three methods to make the routing protocol outstanding. First, it uses a novel software-defined network architecture to reduce computation overhead and energy overhead in sensor nodes. Then, the fuzzy logic–based intracluster and intercluster routing is designed to balance energy consumption. Finally, residual energy–based rotating scheme is proposed to reduce most of the control overhead. According to the simulation results, the proposed protocol balances and reduces the energy consumption, extends the lifetime, and reduces the control overhead and latency of the network.


Sign in / Sign up

Export Citation Format

Share Document