scholarly journals An Image Steganography using Particle Swarm Optimization and Transform Domain

2018 ◽  
Vol 7 (2.24) ◽  
pp. 474 ◽  
Author(s):  
Sanjutha MK

As information technology is growing tremendously, one of the major concern is information security. A technique called image steganography is used to provide better security and for safeguarding the information. In image steganography, a secret image is put into recipient image so that only the receiver and sender will be aware of the secret message. Here in this paper, a secure, optimized scheme called particle swarm optimization is used to select the pixel efficiently for embedding the secret image in to cover image. PSO(Particle Swarm Optimization) decides pixel using fitness function which is based on the cost function. Cost function calculates entropy, edge and pixels intensity to evaluate fitness. Also, a technique called discrete wavelet transform has been employed to achieve robustness and statistical undetectability. The main aim of the proposed paper is to make better security and to obtain efficient PSNR and MSE values  

Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 2000
Author(s):  
Jin-Hwan Lee ◽  
Woo-Jung Kim ◽  
Sang-Yong Jung

This paper proposes a robust optimization algorithm customized for the optimal design of electric machines. The proposed algorithm, termed “robust explorative particle swarm optimization” (RePSO), is a hybrid algorithm that affords high accuracy and a high search speed when determining robust optimal solutions. To ensure the robustness of the determined optimal solution, RePSO employs the rate of change of the cost function. When this rate is high, the cost function appears as a steep curve, indicating low robustness; in contrast, when the rate is low, the cost function takes the form of a gradual curve, indicating high robustness. For verification, the performance of the proposed algorithm was compared with those of the conventional methods of robust particle swarm optimization and explorative particle swarm optimization with a Gaussian basis test function. The target performance of the traction motor for the optimal design was derived using a simulation of vehicle driving performance. Based on the simulation results, the target performance of the traction motor requires a maximum torque and power of 294 Nm and 88 kW, respectively. The base model, an 8-pole 72-slot permanent magnet synchronous machine, was designed considering the target performance. Accordingly, an optimal design was realized using the proposed algorithm. The cost function for this optimal design was selected such that the torque ripple, total harmonic distortion of back-electromotive force, and cogging torque were minimized. Finally, experiments were performed on the manufactured optimal model. The robustness and effectiveness of the proposed algorithm were validated by comparing the analytical and experimental results.


2013 ◽  
Vol 686 ◽  
pp. 266-272 ◽  
Author(s):  
Syarizal Fonna ◽  
M. Ridha ◽  
Syifaul Huzni ◽  
Ahmad Kamal Ariffin

Particle Swarm Optimization (PSO) has been applied as optimization tool in various engineering problems. Inverse analysis is one of the potential application fields for PSO. In this research, the behavior of PSO, related to its inertia weight, in boundary element inverse analysis for detecting corrosion of rebar in concrete is studied. Boundary element inverse analysis was developed by combining BEM and PSO. The inverse analysis is carried out by means of minimizing a cost function. The cost function is a residual between the calculated and measured potentials on the concrete surface. The calculated potentials are obtained by solving the Laplace’s equation using BEM. PSO is used to minimize the cost function. Thus, the corrosion profile of concrete steel, such as location and size, can be detected. Variation in its inertia weight was applied to analyze the behavior of PSO for inverse analysis. The numerical simulation results show that PSO can be used for the inverse analysis for detecting rebar corrosion by combining with BEM. Also, it shows different behavior in minimizing cost function depending on inertia weight.


2021 ◽  
Vol 13 (13) ◽  
pp. 7152
Author(s):  
Mike Spiliotis ◽  
Alvaro Sordo-Ward ◽  
Luis Garrote

The Muskingum method is one of the widely used methods for lumped flood routing in natural rivers. Calibration of its parameters remains an active challenge for the researchers. The task has been mostly addressed by using crisp numbers, but fuzzy seems a reasonable alternative to account for parameter uncertainty. In this work, a fuzzy Muskingum model is proposed where the assessment of the outflow as a fuzzy quantity is based on the crisp linear Muskingum method but with fuzzy parameters as inputs. This calculation can be achieved based on the extension principle of the fuzzy sets and logic. The critical point is the calibration of the proposed fuzzy extension of the Muskingum method. Due to complexity of the model, the particle swarm optimization (PSO) method is used to enable the use of a simulation process for each possible solution that composes the swarm. A weighted sum of several performance criteria is used as the fitness function of the PSO. The function accounts for the inclusive constraints (the property that the data must be included within the produced fuzzy band) and for the magnitude of the fuzzy band, since large uncertainty may render the model non-functional. Four case studies from the references are used to benchmark the proposed method, including smooth, double, and non-smooth data and a complex, real case study that shows the advantages of the approach. The use of fuzzy parameters is closer to the uncertain nature of the problem. The new methodology increases the reliability of the prediction. Furthermore, the produced fuzzy band can include, to a significant degree, the observed data and the output of the existent crisp methodologies even if they include more complex assumptions.


2021 ◽  
pp. 1-17
Author(s):  
Mohammed Al-Andoli ◽  
Wooi Ping Cheah ◽  
Shing Chiang Tan

Detecting communities is an important multidisciplinary research discipline and is considered vital to understand the structure of complex networks. Deep autoencoders have been successfully proposed to solve the problem of community detection. However, existing models in the literature are trained based on gradient descent optimization with the backpropagation algorithm, which is known to converge to local minima and prove inefficient, especially in big data scenarios. To tackle these drawbacks, this work proposed a novel deep autoencoder with Particle Swarm Optimization (PSO) and continuation algorithms to reveal community structures in complex networks. The PSO and continuation algorithms were utilized to avoid the local minimum and premature convergence, and to reduce overall training execution time. Two objective functions were also employed in the proposed model: minimizing the cost function of the autoencoder, and maximizing the modularity function, which refers to the quality of the detected communities. This work also proposed other methods to work in the absence of continuation, and to enable premature convergence. Extensive empirical experiments on 11 publically-available real-world datasets demonstrated that the proposed method is effective and promising for deriving communities in complex networks, as well as outperforming state-of-the-art deep learning community detection algorithms.


2015 ◽  
Vol 785 ◽  
pp. 495-499
Author(s):  
Siti Amely Jumaat ◽  
Ismail Musirin

The paper presents a comparison of performance Static Var Compensator (SVC) and Thyristor Controlled Series Compensator (TCSC) with objective function to minimize the transmission loss, improve the voltage and monitoring the cost of installation. Simulation performed on standard IEEE 30-Bus RTS and indicated that EPSO a feasible to achieve the objective function.


2011 ◽  
Vol 268-270 ◽  
pp. 934-939
Author(s):  
Xue Wen He ◽  
Gui Xiong Liu ◽  
Hai Bing Zhu ◽  
Xiao Ping Zhang

Aiming at improving localization accuracy in Wireless Sensor Networks (WSN) based on Least Square Support Vector Regression (LSSVR), making LSSVR localization method more practicable, the mechanism of effects of the kernel function for target localization based on LSSVR is discussed based on the mathematical solution process of LSSVR localization method. A novel method of modeling parameters optimization for LSSVR model using particle swarm optimization is proposed. Construction method of fitness function for modeling parameters optimization is researched. In addition, the characteristics of particle swarm parameters optimization are analyzed. The computational complexity of parameters optimization is taken into consideration comprehensively. Experiments of target localization based on CC2430 show that localization accuracy using LSSVR method with modeling parameters optimization increased by 23%~36% in compare with the maximum likelihood method(MLE) and the localization error is close to the minimum with different LSSVR modeling parameters. Experimental results show that adapting a reasonable fitness function for modeling parameters optimization using particle swarm optimization could enhance the anti-noise ability significantly and improve the LSSVR localization performance.


2020 ◽  
pp. 47-56
Author(s):  
M. Ilayaraja ◽  

Mobile adhoc network (MANET) comprises a network of mobile nodes, which communicates with one another through wireless connections. Reliability, energy efficiency, congestion control and interferences are the problems faced with the traditional routing protocols in MANET. Routing defines the process of identifying the optimal paths between two nodes in the network. For resolving these issues, several multipath routing techniques have been presented. This paper assesses the performance of the two bio-inspired multipath routing techniques namely Energy-Aware Multipath Routing Scheme based on particle swarm optimization (EMPSO) and PSO with fitness function (PSO-FF) algorithms. These two algorithms are compared and the results are investigated under several performance measures. The simulation results stated that the PSO-FF algorithm has shown better results over the EMPSO algorithm under several measures.


2020 ◽  
Vol 9 (4) ◽  
pp. 243 ◽  
Author(s):  
Hua Wang ◽  
Wenwen Li ◽  
Wei Huang ◽  
Ke Nie

The delimitation of permanent basic farmland is essentially a multi-objective optimization problem. The traditional demarcation methods cannot simultaneously take into account the requirements of cultivated land quality and the spatial layout of permanent basic farmland, and it cannot balance the relationship between agriculture and urban development. This paper proposed a multi-objective permanent basic farmland delimitation model based on an immune particle swarm optimization algorithm. The general rules for delineating the permanent basic farmland were defined in the model, and the delineation goals and constraints have been formally expressed. The model introduced the immune system concepts to complement the existing theory. This paper describes the coding and initialization methods for the algorithm, particle position and speed update mechanism, and fitness function design. We selected Xun County, Henan Province, as the research area and set up control experiments that aligned with the different targets and compared the performance of the three models of particle swarm optimization (PSO), artificial immune algorithm (AIA), and the improved AIA-PSO in solving multi-objective problems. The experiments proved the feasibility of the model. It avoided the adverse effects of subjective factors and promoted the scientific rationality of the results of permanent basic farmland delineation.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Bo Yang

In this paper, an improved genetic algorithm with dynamic weight vector (IGA-DWV) is proposed for the pattern synthesis of a linear array. To maintain the diversity of the selected solution in each generation, the objective function space is divided by the dynamic weight vector, which is uniformly distributed on the Pareto front (PF). The individuals closer to the dynamic weight vector can be chosen to the new population. Binary- and real-coded genetic algorithms (GAs) with a mapping method are implemented for different optimization problems. To reduce the computation complexity, the repeat calculation of the fitness function in each generation is replaced by a precomputed discrete cosine transform matrix. By transforming the array pattern synthesis into a multiobjective optimization problem, the conflict among the side lobe level (SLL), directivity, and nulls can be efficiently addressed. The proposed method is compared with real number particle swarm optimization (RNPSO) and quantized particle swarm optimization (QPSO) as applied in the pattern synthesis of a linear thinned array and a digital phased array. The numerical examples show that IGA-DWV can achieve a high performance with a lower SLL and more accurate nulls.


Sign in / Sign up

Export Citation Format

Share Document