scholarly journals Effect of Utilizing Prosopis Juliflora Ash as Cementitious Material

2018 ◽  
Vol 7 (3.12) ◽  
pp. 281
Author(s):  
George Amal Anik S ◽  
Parthiban Kathirvel ◽  
Murali G

Since the building made of cement concrete consumes almost half of the total energy generated and accordingly accountable for huge amount of CO2 emission, it is necessary to replace the Portland cement (PC) with sustainable construction material. Similarly, Prosopis juliflora is a shrub or small tree in the family Fabaceae, a kind of mesquite which is considered to be a potential threat for ground water in South India. Hence, this has to eradicate so as to maintain the groundwater and also to effectively utilize its ash thereby reducing environmental pollution, this can be used as a partial replacement for cement. In this regard, this paper investigates the technical feasibility of using prosopis juliflora ash (PJA) as cementitious material by partially (10, 20, 30 and 40 %) replacing cement by prosopis juliflora ash. The mixes were evaluated for their fresh, physical and strength properties such as workability, density and compressive strength and the results were compared with the conventional mix

Author(s):  
L. S. Kalaiselvan ◽  
B. Manibalu

Since the building made of cement concrete consumes almost half of the total energy generated and accordingly accountable for huge amount of CO2 emission, it is necessary to replace the Portland cement (PC) with sustainable construction material. Similarly, Prosopis juliflora is a shrub or small tree in the family Fabaceae, a kind of mesquite which is considered to be a potential threat for ground water in South India. Hence, this has to eradicate so as to maintain the groundwater and also to effectively utilize its ash thereby reducing environmental pollution, this can be used as a partial replacement for cement. In this regard, this paper investigates the technical feasibility of using prosopisjuliflora ash(PJA) as cementitious material by partially (10, 20, 30 and 40%) replacing cement by prosopisjuliflora ash. The mixes were evaluated for their fresh, physical and strength properties such as workability, density and compressive strength and the results were compared with the conventional mix.


Author(s):  
P. Subathra ◽  
Binil Varghese ◽  
Muhammed Jamsheed K. P ◽  
Muzammil T. H

Since the building made of cement concrete consumes almost half of the total energy generated and accordingly accountable for huge amount of CO2 emission, it is necessary to replace the Portland cement (PC) with sustainable construction material. Similarly, Prosopis Juliflora is a shrub or small tree in the family Fabaceae, a kind of mesquite which is considered to be a potential threat for ground water in South India. Hence, this has to eradicate so as to maintain the groundwater and also to effectively utilize its ash thereby reducing environmental pollution, this can be used as a partial replacement for cement. In this regard, this paper investigates the technical feasibility of using Prosopis Juliflora ash (PJA) as cementitious material by partially (5%, 10% and 15%) replacing cement by Prosopis Juliflora ash. The mixes were evaluated for their fresh, physical and strength properties such as workability, density and compressive strength and the results were compared with the conventional mix. In order to save the environment and to save the resources we have come up with using the Prosopis Juliflora (Semai-Karuvelam in Tamil) ash as the partial replacement of cement. Cement will produce equal amount of greenhouse gas (co2) which increase the global warming. As the amount of cement is reduced greenhouse gases also reduced. Utilization of Juliflora ash as a partial substitution for cement is one of the promising methods to increase the strength and thermal insulation for cement blocks. The strength parameters (compressive strength, split tensile strength and flexural strength) of concrete with blended Prosopis Juliflora cement are evaluated.


Author(s):  
P. A. Prabakaran ◽  
Satheesh Kumar KRP ◽  
Janani G

Since the building made of cement concrete consumes almost half of the total energy generated and accordingly accountable for huge amount of CO2 emission, it is necessary to replace the Portland cement (PC) with sustainable construction material. Similarly, Prosopis Juliflora is a shrub or small tree in the family Fabaceae, a kind of mesquite which is considered to be a potential threat for ground water in South India. Hence, this has to eradicate so as to maintain the groundwater and also to effectively utilize its ash thereby reducing environmental pollution, this can be used as a partial replacement for cement. In this regard, this paper investigates the technical feasibility of using Prosopis Juliflora ash (PJA) as cementitious material by partially (5%, 10% and 15%) replacing cement by Prosopis Juliflora ash. The mixes were evaluated for their fresh, physical and strength properties such as workability, density and compressive strength and the results were compared with the conventional mix. In order to save the environment and to save the resources we have come up with using the Prosopis Juliflora (Semai-Karuvelam in Tamil) ash as the partial replacement of cement. Cement will produce equal amount of greenhouse gas (co2) which increase the global warming. As the amount of cement is reduced greenhouse gases also reduced. Utilization of Juliflora ash as a partial substitution for cement is one of the promising methods to increase the strength and thermal insulation for cement blocks. The strength parameters (compressive strength, split tensile strength and flexural strength) of concrete with blended Prosopis Juliflora cement are evaluated.


Author(s):  
Safiki Ainomugisha ◽  
Bisaso Edwin ◽  
Bazairwe Annet

Concrete has been the world’s most consumed construction material, with over 10 billion tons of concrete annually. This is mainly due to its excellent mechanical and durability properties plus high mouldability. However, one of its major constituents; Ordinary Portland Cement is reported to be expensive and unaffordable by most low-income earners. Its production contributes about 5%–8% of global CO2 greenhouse emissions. This is most likely to increase exponentially with the demand of Ordinary Portland Cement estimated to rise by 200%, reaching 6000 million tons/year by 2050.  Therefore, different countries are aiming at finding alternative sustainable construction materials that are more affordable and offer greener options reducing reliance on non-renewable sources. Therefore, this study aimed at assessing the possibility of utilizing sugarcane bagasse ash from co-generation in sugar factories as supplementary material in concrete. Physical and chemical properties of this sugarcane bagasse ash were obtained plus physical and mechanical properties of fresh and hardened concrete made with partial replacement of Ordinary Portland Cement. Cost-benefit analysis of concrete was also assessed. The study was carried using 63 concrete cubes of size 150cm3 with water absorption studied as per BS 1881-122; slump test to BS 1881-102; and compressive strength and density of concrete according to BS 1881-116. The cement binder was replaced with sugarcane bagasse ash 0%, 5%, 10%, 15%, 20%, 25% and 30% by proportion of weight. Results showed the bulk density of sugarcane bagasse ash at 474.33kg/m3, the specific gravity of 1.81, and 65% of bagasse ash has a particle size of less than 0.28mm. Chemically, sugarcane bagasse ash contained SiO2, Fe2O3, and Al2O3 at 63.59%, 3.39%, and 5.66% respectively. A 10% replacement of cement gave optimum compressive strength of 26.17MPa. This 10% replacement demonstrated a cost saving of 5.65% compared with conventional concrete. 


2019 ◽  
Vol 5 (12) ◽  
pp. 2587-2597
Author(s):  
Sajid Kamil Zemam ◽  
Sa'ad Fahad Resan ◽  
Musab Sabah Abed

Construction materials made of renewable resources have promising potential given their low cost, availability, and environmental friendliness. Although hemp fibers are the most extensively used fiber in the eco-friendly building sector, their unavailability hinders their application in Iraq. This study aimed to overcome the absence of hemp fiber in Iraq and develop a new sustainable construction material, strawcrete, by using wheat straw and traditional lime as the base binder. A comparable method of developing hempcrete was established. The experimental program adopted novel Mixing Sequence Techniques (MSTs), which depended on changing the sequence of mixed material with fixed proportions. The orientation of the applied load and the specimen’s aspect ratio were also studied. The mixing proportion was 4:1:1 (fiber/binder/water) by volume. Results showed that the developed strawcrete had a dry unit weight ranging from 645 kg/m3 to 734 kg/m3 and a compressive strength ranging from 1.8 MPa to 3.8 MPa. The enhanced physical and strength properties varied with the MST and loading orientation. The properties of the developed hempcrete were compared with those of strawcrete.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Byung Wan Jo ◽  
Sumit Chakraborty ◽  
Kwang Won Yoon

The world’s increasing need is to develop smart and sustainable construction material, which will generate minimal climate changing gas during their production. The bottom-up nanotechnology has established itself as a promising alternative technique for the production of the cementitious material. The present investigation deals with the chemical synthesis of cementitious material using nanosilica, sodium aluminate, sodium hydroxide, and calcium nitrate as reacting phases. The characteristic properties of the chemically synthesized nanocement were verified by the chemical composition analysis, setting time measurement, particle size distribution, fineness analysis, and SEM and XRD analyses. Finally, the performance of the nanocement was ensured by the fabrication and characterization of the nanocement based mortar. Comparing the results with the commercially available cement product, it is demonstrated that the chemically synthesized nanocement not only shows better physical and mechanical performance, but also brings several encouraging impacts to the society, including the reduction of CO2emission and the development of sustainable construction material. A plausible reaction scheme has been proposed to explain the synthesis and the overall performances of the nanocement.


Concrete is an important construction material widely used in the construction industry nowadays. It is blended material consisting of cement, fine aggregate, coarse aggregate and water. Generally the use of river sand as fine aggregate in our country is very widespread in industry. This paper mainly focuses on the study of strength properties of concrete in which river sand is replaced with sea sand as fine aggregate. In addition to it, Quarry Dust when added gains strength. Different mix proportions was replaced partially in 5%, 10%, 15% by Sea sand and Quarry dust. The strength of concrete for various mix proportions are carried out and tested for 14, 28, 56 days of curing. From the results obtained, with the replacement of river sand by sea sand along with well graded quarry dust upto to 15% increases the strength of concrete.


Author(s):  
Ali Mohammed Al-Shehhi ◽  
Ali Majid Ali Al-Marzouqi ◽  
Mohammed Ali Mohammed Al Nofali ◽  
Jayaram Devaraj Kamalesini

This experimental investigation is to utilize the sludge waste as a replacement of natural fine aggregate. We can introduce a sustainable construction material which is proved to be an alternative for waste disposal, helping out to free from environmental pollution. By replacing the natural fine aggregate of sludge waste it helps us to save our nature. Per day for construction site, we are using a large quantity of natural fine aggregate. This study reviews various attempts that have been made to use sludge waste as the partial replacement of fine aggregate. The fine aggregate is partially replaced by a trial mix of 5%, 10%,15%,20%,25% and 30% with sludge waste .Then fresh concrete and hardened concrete is prepared by the partial replacement of fine aggregate. This process is to be done by dry condition. The mechanical and physical properties of the concrete after replacement is to be tested in the laboratory and the results are compared with the ordinary concrete. The comparison of results shows that the replace of 20% sand by sludge waste shows more compressive strength than that of the ordinary concrete with sand as fine aggregate. From the result we can understand that if the sludge contains finer particles the strength of the concrete will further increase.


Author(s):  
Sophía Moncerrat Alvarado Mera ◽  
Andy Gabriel Vélez Soledispa ◽  
Wilter Enrique Ruiz Párraga ◽  
Eduardo Humberto Ortiz Hernández ◽  
César Mauricio Jarre Castro

  El hormigón obtenido a partir de vidrio finamente molido es una línea de investigación a nuevos materiales, basados en el ahorro del cemento y a su vez en la disminución del dióxido de carbono a la atmósfera para obtener un material constructivo más eficiente y sostenible. Con el propósito de buscar una solución para la fabricación de hormigones, la utilización del vidrio finamente molido como reemplazo parcial del cemento es una de las alternativas para integrarlo al proceso constructivo, cuyo objetivo es disminuir el empleo de materias primas no renovables, utilizando materiales reciclados con excelentes características de resistencia y durabilidad. En la presente investigación se estudió la resistencia a compresión del hormigón, usando vidrio finamente molido, sustituyéndolo en porcentajes del 5%, 10% y 15% en reemplazo parcial del cemento. Se elaboraron probetas de hormigón convencional y probetas de hormigón con adición de vidrio finamente molido, a cada probeta experimentada se le realizó el ensayo de resistencia a compresión del hormigón en un tiempo máximo de curado húmedo de 56 días. Se realizó la comparación entre el hormigón sin adición y el hormigón con porcentajes de vidrio finamente molido, llegando a la conclusión que el vidrio sustituido al 15% como reemplazo parcial del cemento disminuye su resistencia a compresión.   Palabras claves — vidrio finamente molido, resistencia a compresión, hormigón, adición, cemento.   Abstract  The concrete obtained from finely ground glass is a line of investigation to new materials, based on the saving of cement and in turn on the reduction of carbon dioxide to the atmosphere to obtain a more efficient and sustainable construction material. In order to find a solution for the manufacture of concrete, the use of finely ground glass as a partial replacement of cement is one of the alternatives to integrate it into the construction process, whose aim is to reduce the use of non-renewable raw materials, using recycled materials with excellent strength and durability characteristics. In this research, the compressive strength of concrete was studied, using finely ground glass, replacing it in percentages of 5%, 10% and 15% in partial replacement of cement. Conventional concrete test pieces and concrete test pieces with the addition of finely ground glass were produced and each tested test piece was tested for the compressive strength of the concrete within a maximum curing time of 56 days A comparison was made between aggregate concrete and concrete with finely ground glass percentages, concluding that glass replaced at 15% as a partial replacement for cement decreases its compressive strength.   Index Terms — finely ground glass, compressive strength, concrete, addition, cement.


Rice husk ash (RHA) is an agricultural based pozzolanic material, which contains high amount of silica content. This experimental research was conducted on Self Compaction Concrete (SCC), to generate an economical concrete by using Manufactured Sand (M-sand) and Rice Husk Ash. Natural River sand usage is damaging the river beds, causing the drastic changes in ground water table and cost of river sand increasing day by day. To overcome this problems manufactured sand is used in SCC production. Rice husk Ash is very cheaper when compared to the Cement. It is extracted from Rice Husk which is a waste of Agricultural product. This material can be useful to generate a sustainable construction material. This paper presents the experimental results on development of mechanical properties of SCC with M-sand and Rice Husk Ash. Experiment conducted on 6 different mixes. i.e Partial Replacement with RHA (0%, 5%, 10%, 15%, 20%, 25%). For each mix Fresh properties (Slump flow & L-Box Test) & mechanical properties (Compressive strength, Split Tensile strength and Flexural strength) for 7days, 28days and 60days along with Density comparisons are compared.


Sign in / Sign up

Export Citation Format

Share Document