scholarly journals Application of sensitivity analysis and genopt to optimize the energy performance of a building in Morocco

2018 ◽  
Vol 7 (4) ◽  
pp. 2068 ◽  
Author(s):  
Abdelhadi Serbouti ◽  
Mourad Rattal ◽  
Abdellah Boulal ◽  
Mohammed Harmouchi ◽  
Azeddine Mouhsen

The worldwide demographic and economic growth increases the global need for energy and directly contributes to climate change. In Morocco, the residential real estate is the third largest consumer of energy after transport and industry sectors. Thus, the aim of this study is to help engineers improve the energy performance of residential buildings by coupling the TRNSYS software both with a sensitivity analysis method and with an optimization tool. In fact, sensitivity analysis allows reducing the number of input parameters of any studied model, by ranking their degree of impact on any chosen output, and then discard the parameters with the least influence on that output. To do so, we developed algorithms in Python programming language to combine the open source library SALib, available in Github platform, with the TRNSYS software. Then, the chosen input parameters can be optimized through coupling the generic optimization program Genopt with TRNSYS. This article will also explain how these tools were applied to reduce the heating & air-conditioning needs of a high-energy consumption building in Morocco, while studying the variation of nineteen input parameters in TRNSYS. The main aim is to meet the energy performance requirement of the Moroccan thermal regulation for buildings.  

Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 571 ◽  
Author(s):  
Azadeh Sadeghi ◽  
Roohollah Younes Sinaki ◽  
William A. Young ◽  
Gary R. Weckman

As the level of greenhouse gas emissions increases, so does the importance of the energy performance of buildings (EPB). One of the main factors to measure EPB is a structure’s heating load (HL) and cooling load (CL). HLs and CLs depend on several variables, such as relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area, and glazing area distribution. This research uses deep neural networks (DNNs) to forecast HLs and CLs for a variety of structures. The DNNs explored in this research include multi-layer perceptron (MLP) networks, and each of the models in this research was developed through extensive testing with a myriad number of layers, process elements, and other data preprocessing techniques. As a result, a DNN is shown to be an improvement for modeling HLs and CLs compared to traditional artificial neural network (ANN) models. In order to extract knowledge from a trained model, a post-processing technique, called sensitivity analysis (SA), was applied to the model that performed the best with respect to the selected goodness-of-fit metric on an independent set of testing data. There are two forms of SA—local and global methods—but both have the same purpose in terms of determining the significance of independent variables within a model. Local SA assumes inputs are independent of each other, while global SA does not. To further the contribution of the research presented within this article, the results of a global SA, called state-based sensitivity analysis (SBSA), are compared to the results obtained from a traditional local technique, called sensitivity analysis about the mean (SAAM). The results of the research demonstrate an improvement over existing conclusions found in literature, which is of particular interest to decision-makers and designers of building structures.


2013 ◽  
Vol 330 ◽  
pp. 911-915 ◽  
Author(s):  
Vladimír Geletka ◽  
Anna Sedláková

The quality of most buildings may be affected during the initial phase of architectural design. It is therefore to optimize input parameters, which significantly influence energy efficiency. In principle it is possible to speak of a deterministic approach, which consider the input parameters to be fixed or a stochastic approach, which takes a wider set of input parameters into account. A single-storey house is evaluated in terms of energy performance in the initial phase of building design, where input parameters are changed in order to determine a correlation coefficient. The methodology is based on a sensitivity analysis (SA) and MonteCarlo simulation based on a stochastic random selection. Regression (RA) were written to express the impact architectural design has on energy performance. Feedback from the regression model estimates annual heating demand of single storey house.


2021 ◽  
Vol 13 (24) ◽  
pp. 13934
Author(s):  
Hanan S. S. Ibrahim ◽  
Ahmed Z. Khan ◽  
Yehya Serag ◽  
Shady Attia

Retrofitting “nearly-zero energy” heritage buildings has always been controversial, due to the usual association of the “nearly-zero energy” target with high energy performance and the utilization of renewable energy sources in highly regarded cultural values of heritage buildings. This paper aims to evaluate the potential of turning heritage building stock into a “nearly-zero energy” in hot, dry climates, which has been addressed in only a few studies. Therefore, a four-phase integrated energy retrofitting methodology was proposed and applied to a sample of heritage residential building stock in Egypt along with microscale analysis on buildings. Three reference buildings were selected, representing the most dominant building typologies. The study combines field measurements and observations with energy simulations. In addition, simulation models were created and calibrated based on monitored data in the reference buildings. The results show that the application of hybrid passive and active non-energy generating scenarios significantly impacts energy use in the reference buildings, e.g., where 66.4% of annual electricity use can be saved. Moreover, the application of solar energy sources approximately covers the energy demand in the reference buildings, e.g., where an annual self-consumption of electricity up to 78% and surplus electricity up to 20.4% can be achieved by using photo-voltaic modules. Furthermore, annual natural gas of up to 66.8% can be saved by using two unglazed solar collectors. Lastly, achieving “nearly-zero energy” was possible for the presented case study area. The originality of this work lies in developing and applying an informed retrofitting (nearly-zero energy) guide to be used as a benchmark energy model for buildings that belong to an important historical era. The findings contribute to fill a gap in existing studies of integrating renewable energy sources to achieve “nearly-zero energy” in heritage buildings in hot climates.


2020 ◽  
pp. 014459872097514
Author(s):  
AbdulRahman S Almushaikah ◽  
Radwan A Almasri

Lately, with the growth in energy consumption worldwide to support global efforts to improve the climate, developing nations have to take significant measures. Kingdom of Saudi Arabia (KSA) implemented meaningful policy actions towards promoting energy efficiency (EE) in several sectors, especially in the building sector, to be more sustainable. In this paper, various EE measures and solar energy prospects are investigated for the residential sector, in two locations in the middle region of the KSA. An energy performance analysis of pre-existing residential buildings with an overall design is performed using simulation programs. However, installing EE measures in the building envelope is important to achieve an efficient sector regarding its energy consumption. The findings showed that applying EE measures for the building envelope, walls, roof, and windows should be considered first that makes the energy conservation possible. In Riyadh, EE measures are responsible for reducing energy consumption by 27% for walls, 14% for roof, and 6% for window, and by 29%, 13%, and 6% for walls, roof, and windows, respectively, for Qassim. However, the most impactful EE solution was selecting a heating, ventilation, and air conditioning (HVAC) system with a high energy efficiency rate (EER), which can minimize the energy consumption by 33% and 32% for Riyadh and Qassim, respectively. The study's feasibility showed that the number of years needed to offset the initial investment for a proposed roof PV system exceeds the project's life, if the energy produced is exported to the grid at the official export tariff of 0.019 $/kWh. However, the simple payback time was 13.42 years if the energy produced is exported to the grid at a rate of 0.048 $/kWh, reflecting the project's economic feasibility.


2014 ◽  
Vol 1020 ◽  
pp. 491-494
Author(s):  
Jan Pasek ◽  
Jan Mlcak ◽  
Katerina Paskova

Since 2013 it is compulsory in the Czech Republic to declare energy performance of a property intended for sale or lease in so called Energy Performance Certificates. Before introduction of this obligation many various arguments were presented to public to support it, especially by the subjects participating in the energetic evaluation of buildings. One of the most common arguments was that this gives people interested in lease or purchase of a property with high energy consumption a tool for reduction of the rental fee or the purchase price. This contribution, based on performed research and wider analyses, shows that this assumption together with others was misleading, and it also evaluates the reasons of this fact.


Author(s):  
Michael Keltsch ◽  
Werner Lang ◽  
Thomas Auer

The Energy Performance of Buildings Directive 2010 calls for the Nearly Zero Energy Standard for new buildings from 2021 onwards: Buildings using “almost no energy” are powered by renewable sources or energy produced by the building itself. For residential buildings, this ambitious new standard has already been reached. But for other building types this goal is still far away. The potential of these buildings to meet a Nearly Zero Energy Standard was investigated by analyzing ten case studies representing non-residential buildings with different uses. The analysis shows that the primary characteristics common to critical building types are a dense building context with a very high degree of technical installation (such as hospital, research and laboratory buildings). The large primary energy demand of these types of buildings cannot be compensated by building and property-related energy generation including off-site renewables. If the future Nearly Zero Energy Standard were to be defined with lower requirements because of this, the state related properties of Bavaria suggest that the real potential energy savings available in at least 85% of all new buildings would be insufficiently exploited. Therefore, it would be useful to instead individualize the legal energy verification process for new buildings to distinguish critical building types such as laboratories and hospitals.


2021 ◽  
Vol 65 (1) ◽  
pp. 83-92
Author(s):  
Valeria Todeschi ◽  
Simone Beltramino ◽  
Bernadette El Jamous ◽  
Guglielmina Mutani

Nowadays, energy consumption in buildings is one of the fundamental drivers to control greenhouse gas emissions and environmental impact. In fact, the air quality of urban environments can cause two main phenomena in metropolitan areas: urban heat island and climate changes. The aim of this work is to showcase how different building variables can impact the residential building’s space heating and cooling energy consumption. Buildings energy-related variables can be fundamental viewpoints to improve the energy performance of neighborhoods, especially in future urban planning. This work examines four neighborhoods in the city of Turin (IT): Arquata, Crocetta, Sacchi, and Olympic Village characterized by different morphologies and building typologies. In each neighborhood, residential building was grouped according to orientations and construction periods. A sensitivity analysis was applied by analysing six building variables: infiltration rate, window-to-wall ratio, and windows, walls, roofs, and floor thermal transmittances. The energy consumption for space heating and cooling of residential buildings and local climate conditions were investigated using CitySim Pro tool and ENVI-met. The challenge of this work is to identify the building variables that most influence energy consumption and to understand how to promote high-energy efficiency neighborhoods: the goal is to identify the “ideal” urban form with low consumption and good comfort conditions in outdoor urban environments. The results of this work show a significant connection between the energy consumption and the six analyzed building variables; however, this relationship also depends on the shape and orientation of the neighborhood.


2016 ◽  
Vol 13 (2) ◽  
Author(s):  
Sheikh Tijan Tabban ◽  
Nelson Fumo

Energy models of buildings can be developed and used for analysis of energy consumption. A model offers the opportunity to simulate a building under specific conditions for analysis of energy efficiency measures or optimum design. Due to the great amount of information needed to develop an energy model of a building, the number of inputs can be reduced by making variable the most relevant input parameters and making the others to take common or standard values. In this study, an analysis of input parameters required by computational tools to estimate energy consumption in homes was done in two stages. In the first stage, common input parameters were identified for three software and three webtools based on the criteria that the input parameter should be common for at least two software and at least one webtool. In the second stage, a sensitivity analysis was performed on the inputs identified in the first stage. The software BEopt, developed by the National Renewable Energy Laboratory, was used as the source of typical input parameters to be compared, and to perform the simulations for the sensitivity analysis. The base or reference model to perform simulations for the sensitivity analysis corresponds to a model developed with information from a research house located on the campus of the University of Texas at Tyler and default inputs for the BEopt B-10 reference benchmark. Results show that besides the location, and consequently the weather, common parameters are building orientation, air leakage, space conditioning settings, space conditioning schedule, water heating equipment, and terrain. Among these parameters, the sensitivity analysis identified the largest variations in energy consumption for variations on space conditioning schedule (heating and cooling setpoints), followed by the type of water heating equipment. KEYWORDS: Residential Buildings; Energy Consumption; Energy Analysis; Input Parameters; Building Simulation; Source Energy


Author(s):  
Michael Keltsch ◽  
Werner Lang ◽  
Thomas Auer

The Energy Performance of Buildings Directive 2010 calls for the Nearly Zero Energy Standard for new buildings from 2021 onwards: Buildings using “almost no energy” are powered by renewable sources or energy produced by the building itself. For residential buildings, this ambitious new standard has already been reached. But for other building types this goal is still far away. The potential of these buildings to meet a Nearly Zero Energy Standard was investigated by analyzing ten case studies representing non-residential buildings with different uses. The analysis shows that the primary characteristics common to critical building types are a dense building context with a very high degree of technical installation (such as hospital, research and laboratory buildings). The large primary energy demand of these types of buildings cannot be compensated by building and property-related energy generation including off-site renewables. If the future Nearly Zero Energy Standard were to be defined with lower requirements because of this, the state related properties of Bavaria suggest that the real potential energy savings available in at least 85% of all new buildings would be insufficiently exploited. Therefore, it would be useful to instead individualize the legal energy verification process for new buildings to distinguish critical building types such as laboratories and hospitals.


Sign in / Sign up

Export Citation Format

Share Document