scholarly journals Evaluating the potential energy savings of residential buildings and utilizing solar energy in the middle region of Saudi Arabia – Case study

2020 ◽  
pp. 014459872097514
Author(s):  
AbdulRahman S Almushaikah ◽  
Radwan A Almasri

Lately, with the growth in energy consumption worldwide to support global efforts to improve the climate, developing nations have to take significant measures. Kingdom of Saudi Arabia (KSA) implemented meaningful policy actions towards promoting energy efficiency (EE) in several sectors, especially in the building sector, to be more sustainable. In this paper, various EE measures and solar energy prospects are investigated for the residential sector, in two locations in the middle region of the KSA. An energy performance analysis of pre-existing residential buildings with an overall design is performed using simulation programs. However, installing EE measures in the building envelope is important to achieve an efficient sector regarding its energy consumption. The findings showed that applying EE measures for the building envelope, walls, roof, and windows should be considered first that makes the energy conservation possible. In Riyadh, EE measures are responsible for reducing energy consumption by 27% for walls, 14% for roof, and 6% for window, and by 29%, 13%, and 6% for walls, roof, and windows, respectively, for Qassim. However, the most impactful EE solution was selecting a heating, ventilation, and air conditioning (HVAC) system with a high energy efficiency rate (EER), which can minimize the energy consumption by 33% and 32% for Riyadh and Qassim, respectively. The study's feasibility showed that the number of years needed to offset the initial investment for a proposed roof PV system exceeds the project's life, if the energy produced is exported to the grid at the official export tariff of 0.019 $/kWh. However, the simple payback time was 13.42 years if the energy produced is exported to the grid at a rate of 0.048 $/kWh, reflecting the project's economic feasibility.

2013 ◽  
Vol 805-806 ◽  
pp. 1519-1523 ◽  
Author(s):  
Chang Feng Wang ◽  
Guo Qiang Fan

In order to solve problems of high energy consumption and poor indoor thermal comfort in existing rural residential buildings, Tianjin city developed Tianjin energy efficiency standard for rural residential buildings, the building envelope insulation technique in the standard-including determination of heat transfer coefficient, principle of choosing insulation materials for building envelope, energy efficiency standards of walls, windows, and roofs are unscrambled particularly in this paper. It is suggested that natural materials and appropriate techniques are used to achieve the energy-saving goal for rural residential buildings with minimum energy consumption.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3232
Author(s):  
Dorota Chwieduk ◽  
Michał Chwieduk

The paper shows how difficult it is to prove technically that a building really is both low energy and smart, and that all aspects of energy efficiency have been treated equally. Regulations connected to the determination of the energy performance of residential buildings take into account only space and hot water heating energy consumption and define the indices of maximal primary energy consumption, but not energy needs based on the architecture of the building. A single family house designed and constructed as a low energy solar house in Warsaw’s suburbs is considered. Availability of solar energy and its influence on the architecture of the house is analyzed. A specific solar passive architectural concept with solar southern and cold northern buffer spaces incorporated into the interior of the house is presented. Parameters of the building’s structure, construction materials, as well as operation parameters of equipment and heating systems based on active use of solar energy, ground energy (via a heat pump) and waste heat from a ventilation system are described. Results of calculations give values of final and primary energy consumption index levels of 11.58 kWh/m2 and 25.77 kWh/m2, respectively. However, the official methodology for determination of energy performance does not allow for presenting how energy efficient and smart the building really is.


Buildings ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 163 ◽  
Author(s):  
Ahmed Felimban ◽  
Alejandro Prieto ◽  
Ulrich Knaack ◽  
Tillmann Klein ◽  
Yasser Qaffas

In the Kingdom of Saudi Arabia (KSA), residential buildings’ energy consumption accounts for almost 50% of the building stock electricity consumption. The KSA’s economy relies heavily on fossil fuel sources, namely oil reservoirs, whose depletion will negatively affect the future development of the country. The total electricity consumption is growing by approximately 5–8% annually, which would lead to oil production and oil consumption being equal in 2035. Therefore, residential buildings need further assessment as regards their current energy consumption. This research used a survey to explore current user behaviour in residential buildings’ energy performance in the city of Jeddah, KSA. The findings of the survey show that several factors impact the energy performance in residential buildings. First, the buildings’ thermal properties were found to be poorly designed. Second, the cultural aspects (family member role and generous hospitality), and the majority of users within the buildings preferring a room temperature of below 24 °C, requires a massive amount of cooling due to the climate conditions. Third, an increase in user awareness has helped to slightly improve residential buildings’ energy efficiency. Knowing the current high-energy-consumption sources and causes, being able to define opportunities for thermal properties’ enhancement, and increasing user awareness of how to achieve self-sustaining buildings are essential.


Author(s):  
Safa Nayır ◽  
Ümit Bahadır ◽  
Şakir Erdoğdu ◽  
Vedat Toğan

Energy efficiency in the construction industry is crucial to reducing increased energy consumption. A significant portion of the energy is consumed in residential buildings. Thermal properties of the materials used in the building envelope can reduce the energy consumed in the buildings and thus contribute to the building economy. For this purpose, in the study, structural lightweight concretes (SLWC) with a lower thermal conductivity than normal weight concrete (NWC) were produced and energy efficiency and life cycle costs were compared between these concretes on a 1 + 1 reference flat. The compressive strength, unit weights and thermal conductivity coefficients of SLWCs and NWC were determined experimentally. Heating and cooling energy consumption and life cycle costs for the flat were calculated using the DesignBuilder simulation program according to the different concrete types produced. The results indicate that the thermal conductivity coefficients of all SLWCs produced were about 37–45 % lower than those of NWC. All mixes of the SLWCs provided energy saving by about 18–25 % compared to the NWC and two SLWCs reduced the life cycle cost by 4 %. In addition, the results showed that the best SLWC about energy was not the best SLWC about life cycle cost.


2019 ◽  
Vol 14 (2) ◽  
pp. 109-136
Author(s):  
Chaitali Basu ◽  
Virendra Kumar Paul ◽  
M.G. Matt Syal

The energy performance of an existing building is the amount of energy consumed to meet various needs associated with the standardized use of a building and is reflected in one or more indicators known as Building Energy Performance Indicators (EnPIs). These indicators are distributed amongst six main factors influencing energy consumption: climate, building envelope, building services and energy systems, building operation and maintenance, occupants' activities and behaviour, and indoor environmental quality. Any improvement made to either the existing structure or the physical and operational upgrade of a building system that enhances energy performance is considered an energy efficiency retrofit. The main goal of this research is to support the implementation of multifamily residential building energy retrofits through expert knowledge consensus on EnPIs for energy efficiency retrofit planning. The research methodology consists of a comprehensive literature review which has identified 35 EnPIs for assessing performance of existing residential buildings, followed by a ranking questionnaire survey of experts in the built-environment to arrive at a priority listing of indicators based on mean rank. This was followed by concordance analysis and measure of standard deviation. A total of 280 experts were contacted globally for the survey, and 106 completed responses were received resulting in a 37.85% response rate. The respondents were divided into two groups for analysis: academician/researchers and industry practitioners. The primary outcome of the research is a priority listing of EnPIs based on the quantitative data from the knowledge-base of experts from these two groups. It is the outcome of their perceptions of retrofitting factors and corresponding indicators. A retrofit strategy consists of five phases for retrofitting planning in which the second phase comprises an energy audit and performance assessment and diagnostics. This research substantiates the performance assessment process through the identification of EnPIs.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1309 ◽  
Author(s):  
Tomasz Szul ◽  
Stanisław Kokoszka

In many regions, the heat used for space heating is a basic item in the energy balance of a building and significantly affects its operating costs. The accuracy of the assessment of heat consumption in an existing building and the determination of the main components of heat loss depends to a large extent on whether the energy efficiency improvement targets set in the thermal upgrading project are achieved. A frequent problem in the case of energy calculations is the lack of complete architectural and construction documentation of the analyzed objects. Therefore, there is a need to search for methods that will be suitable for a quick technical analysis of measures taken to improve energy efficiency in existing buildings. These methods should have satisfactory results in predicting energy consumption where the input is limited, inaccurate, or uncertain. Therefore, the aim of this work was to test the usefulness of a model based on Rough Set Theory (RST) for estimating the thermal energy consumption of buildings undergoing an energy renovation. The research was carried out on a group of 109 thermally improved residential buildings, for which energy performance was based on actual energy consumption before and after thermal modernization. Specific sets of important variables characterizing the examined buildings were distinguished. The groups of variables were used to estimate energy consumption in such a way as to obtain a compromise between the effort of obtaining them and the quality of the forecast. This has allowed the construction of a prediction model that allows the use of a fast, relatively simple procedure to estimate the final energy demand rate for heating buildings.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6305
Author(s):  
Haibo Guo ◽  
Lu Huang ◽  
Wenjie Song ◽  
Xinyue Wang ◽  
Hongnan Wang ◽  
...  

As the climate changed in recent years, an increase in summer indoor temperatures in severe cold and cold regions of China has started to affect thermal comfort. However, the local design standard for energy efficiency does not recognize this phenomenon. This paper reports the potential overheating phenomenon in residential buildings and examines the rationale for the current thermal designs adopted in severe cold and cold regions of China. In this study, the two most commonly used building materials, reinforced concrete (RC) and cross laminated timber (CLT), are used separately in the design of an 18-story residential building envelope located in six different cities in the severe cold and cold regions. The energy consumption and indoor operative temperatures during the operation of these buildings are simulated using Integrated Environmental Solutions Virtual Environment (IES VE). The results demonstrate that both the RC and the CLT buildings experience varying degrees of overheating in any climate subregion. The CLT buildings have longer overheating hours compared to the RC buildings, especially in the cold regions. The results also indicate that for apartments on higher stories, the cooling energy consumption and indoor temperature also increase gradually. The research results suggest that the local design standard for energy efficiency needs to be adjusted by adding thermal design methods for summer to reduce the periods of overheating.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1968 ◽  
Author(s):  
Marek Borowski ◽  
Piotr Mazur ◽  
Sławosz Kleszcz ◽  
Klaudia Zwolińska

The energy consumption of buildings is very important for both economic and environmental reasons. Newly built buildings are characterized by higher insulation and airtightness of the building envelope, and are additionally equipped with technologies that minimize energy consumption in order to meet legal requirements. In existing buildings, the modernization process should be properly planned, taking into account available technologies and implementation possibilities. Hotel buildings are characterized by a large variability of energy demand, both on a daily and a yearly basis. Monitoring systems, therefore, provide the necessary information needed for proper energy management in the building. This article presents an energy analysis of the Turówka hotel located in Wieliczka (southern Poland). The historical hotel facility is being modernized as part of the project to adapt the building to the requirements of a sustainable building. The modernization proposal includes a trigeneration system with a multifunctional reverse regenerator and control module using neural algorithms. The main purpose is to improve the energy efficiency of the building and adapt it to the requirements of low-energy buildings. The implementation of a monitoring system enables energy consumption to be reduced and improves the energy performance of the building, especially through using energy management systems and control modules. The proposed retrofit solution considers the high energy consumption, structure of the energy demand, and limits of retrofit intervention on façades.


2011 ◽  
Vol 280 ◽  
pp. 147-151 ◽  
Author(s):  
Hong Guo ◽  
Min Fang Su ◽  
Xiao Jun Jin

Based on the current energy consumption situation of existing masonry-concrete residential buildings in China, it discussed the main energy-saving renovation policies and technologies. Taking existing masonry-concrete residential building of Taiyuan city as a case, it analyzed its heat loss situations, energy-saving renovation design and reconstruction technologies of building envelope. It discussed energy-saving renovation effects. Energy efficiency and indoor thermal environment improved significantly after energy-saving renovation. The building life is extended.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
José Antonio Álvarez ◽  
Juan Ramón Rabuñal ◽  
Dolores García-Vidaurrázaga ◽  
Alberto Alvarellos ◽  
Alejandro Pazos

Increasing the energy efficiency of buildings is a strategic objective in the European Union, and it is the main reason why numerous studies have been carried out to evaluate and reduce energy consumption in the residential sector. The process of evaluation and qualification of the energy efficiency in existing buildings should contain an analysis of the thermal behavior of the building envelope. To determine this thermal behavior and its representative parameters, we usually have to use destructive auscultation techniques in order to determine the composition of the different layers of the envelope. In this work, we present a nondestructive, fast, and cheap technique based on artificial neural network (ANN) models that predict the energy performance of a house, given some of its characteristics. The models were created using a dataset of buildings of different typologies and uses, located in the northern area of Spain. In this dataset, the models are able to predict the U-opaque value of a building with a correlation coefficient of 0.967 with the real U-opaque measured value for the same building.


Sign in / Sign up

Export Citation Format

Share Document