scholarly journals Influence on the Phase Formation and Strength of Porcelain by Partial Substitution of Fly Ash Compositions

2018 ◽  
Vol 7 (4.30) ◽  
pp. 271
Author(s):  
Nur Azureen Alwi Kutty ◽  
Mohamad Zaky Noh ◽  
Mohd Zul Hilmi Mayzan ◽  
Sani Garba Durumin Iya

This paper presents the study of the influence on the phase formation and strength of the porcelain by the partial substitution of fly ash. The fly ash was calcined at the temperature of 800 °C and partially substituted into feldspar. Each mixture were mixed and pressed into green pellets sintered at different sintering temperature (1100 – 1300 °C) at the interval of 50 °C for 120 min. The compressive strength, crystalline phase and the microstructure of the porcelain were investigated. The optimum physical and mechanical properties were obtained at 5 wt % of fly ash porcelain sintered at 1250 °C. The apparent porosity reaches a minimum value with 0.22 % which is nearly to zero and obtained the highest compressive strength of 105.40 MPa. The XRD results reveal that the highest percentage of mullite was obtained at the substitution of 5 wt % of fly ash with 49.0 %. The glassy phase shows an increasing trend with dissolution of mullite content which affects the strength and microstructure of the porcelain.

Clay Minerals ◽  
2011 ◽  
Vol 46 (2) ◽  
pp. 213-223 ◽  
Author(s):  
V. Lilkov ◽  
I. Rostovsky ◽  
O. Petrov

AbstractCement mortars and concretes incorporating clinoptilolite, silica fume and fly ash were investigated for changes in their physical and mechanical properties. It was found that additions of 10% clinoptilolite and 10% Pozzolite (1:1 mixture of silica fume and fly ash) were optimal for improvement of the quality of the hardened products, giving 8% and 13% increases in flexural and compressive strength respectively. The specific pore volume of the mortars incorporating zeolite decreased between the 28th and 180th day to levels below the values for the control composition due to the fact that clinoptilolite exhibits its pozzolanic activity later in the hydration. In these later stages, pores with radii below 500 nm increased at the expense of larger pores. The change in the pore-size distribution between the first and sixth months of hydration occurs mostly in the mortars with added zeolite.


Author(s):  
Vu-An Tran

This research investigates the physical and mechanical properties of mortar incorporating fly ash (FA), which is by-product of Duyen Hai thermal power plant. Six mixtures of mortar are produced with FA at level of 0%, 10%, 20%, 30%, 40%, and 50% (by volume) as cement replacement and at water-to-binder (W/B) of 0.5. The flow, density, compressive strength, flexural strength, and water absorption tests are made under relevant standard in this study. The results have shown that the higher FA content increases the flow of mortar but significantly decreases the density of mixtures. The water absorption and setting time increases as the samples incorporating FA. Compressive strength of specimen with 10% FA is approximately equal to control specimen at the 91-day age. The flexural strength of specimen ranges from 7.97 MPa to 8.94 MPa at the 91-day age with the best result for samples containing 10% and 20% FA.


2013 ◽  
Vol 872 ◽  
pp. 201-205 ◽  
Author(s):  
Valeriy M. Pogrebenkov ◽  
Kirill S. Kostikov

This article presents the study of phase formation at nonductile component interacting (diopside, alumina and pre-synthesized porcelain). Technical ceramic compositions with improved physical and mechanical properties are developed on the basis of these components. A theoretical research has been conducted, as a result of which a triple forecasting diagram is built in the system of diopside - alumina - porcelain. The diagram reflects 10 main areas with a major crystalline phase for the composition. Theoretical investigations are proved out by experimental data.


2020 ◽  
Vol 26 (1) ◽  
pp. 9-16
Author(s):  
Yulita Arni Priastiwi ◽  
Arif Hidayat ◽  
Dwi Daryanto ◽  
Zidny Salamsyah Badru

The presence of white soil in a geopolymer mortar affects the physical and mechanical properties of the mortar itself, especially in compressive strength, density and modulus of elasticity produced. Geopolymer mortar composed of fly ash, sand, water, and NaOH which acts as an alkaline activator compared to mortar from the same material, but white soil from Kupang is added as a substitution of fly ash. Specimens are made in six variations. Geopolymer mortar composers using a ratio of 1 binder: 3 sand with w/b of 0.5. Binder composed of fly ash with white soil substitution of 0; 5; 10; 15; 20 and 30% by weight of fly ash. An activator NaOH 8M solution was added to the mixture. Both white soil and fly ash pass of sieve no. 200 with a moisture content of 0%. Mortar made measuring 5x5x5 cm. The mortar was treated by the oven of method at 60 oC for 24 hours until the mortar does not change in weight. The test results show geopolymer mortar with 15% substitution of white soil to fly ash has the highest compressive strength, density and modulus of elasticity among other variations. In all mortar variations, compressive strength at 14 days has reached 75% of strength at 28 days.


2021 ◽  
Vol 15 (1) ◽  
pp. 51
Author(s):  
Anni Susilowati ◽  
Iqbal Yusra

Abstract One of the world's construction needs is casting in large volumes that require concrete with low hydration heat, and one of the problems is that the concrete has a setting during the casting queue. Therefore, a research was conducted on adding retarder to concrete with a mixture of GGBFS and Fly Ash. The purpose of this research was to analyze the physical and mechanical properties of concrete, the effect of adding retarder and obtain optimal retarder levels. This research used an experimental methods to make concrete specimens of 75% cement mix: GGBFS 15%: Fly Ash 10% with a water cement ratio of 0.5 using mix design SNI-03-2834-2000. Variations of the retarder added to the concrete mixture were 0%, 0.2%, 0.4%, and 0.6% by weight of cement with the Naptha RD 31 type. Analysis of the effect of the retarder used statistical regression test methods on SPSS. The results of research obtained the longest setting time in this researchwas 1890 minutes at a variation of 0.6% with a slump of 168 mm. The compressive strength of the concrete increased by 12.07% - 52.36% by using a retarder added material. Based on the research results, it was obtained that the optimum level of use of retarder in mixed concrete GGBFS and Fly Ash was 0.2% because it has the best physical and mechanical properties. Keywords: Fly Ash, GGBFS, Compressive Strength, Retarder


2016 ◽  
Vol 6 (3) ◽  
pp. 235-247
Author(s):  
J. A. Canul ◽  
E. I. Moreno ◽  
J. M. Mendoza Rangel

Efecto de la ceniza volante en las propiedades mecánicas de concretos hechos con agregado calizo triturado de alta absorciónRESUMENEl concreto elaborado con agregado calizo triturado de alta absorción de Yucatán, México, es considerado de baja calidad. El objetivo de la investigación es mejorar las propiedades mecánicas del concreto elaborado con este tipo de agregado incorporando ceniza volante (CV). Las propiedades medidas fueron: Resistencia a la compresión (RC) y módulo de elasticidad. Se utilizaron relaciones agua/cemento de 0.5 y 0.7, la CV se incorporó como sustitución parcial del cemento en un 20% y 40%, y como aditivo mineral en un 10% y 20%. Los resultados indican que la CV puede ser utilizada en concretos con ACTAA como agregado inerte fino ya que logra mantener una RC similar a la referencia. Se presentan ecuaciones para la predicción de propiedades mecánicas.Palabras clave: ceniza volante; agregado calizo; absorción; resistencia a la compresión; módulo de elasticidad. Fly ash effect on mechanical properties of concretes made with high absorbent crushed limeston aggregates ABSTRACT Concrete made with high-absorbent crushed limestone aggregates from Yucatán, México are well known as a low quality concrete. The aim of this investigation is to enhance the mechanical properties of concrete with high absorbent crushed limestone aggregates and fly ash. The measured properties were: compressive strength and elastic modulus. The water/cement ratios were 0.5 and 0.7, fly ash was incorporated as partial substitution of cement with 20% and 40% and as a mineral additive in 10% and 20%. Results show that fly ash can be used in this kind of concretes as mineral additive due to compressive strength was similar to those reference samples. Finally, an equation for predicting mechanical properties is reported.Keywords: fly ash; limestone aggregates; absorption; compressive strength; elastic modulus. Efeito de cinzas volantes nas propriedades mecânicas de concreto feitos com agregado calcário moído de alta absorção RESUMO O concreto produzido com agregado calcário de alta absorção de Yucatan, no México, é considerado de baixa qualidade. O objetivo deste estudo é o de melhorar as propriedades mecânicas do concreto fabricado com este tipo de agregado incorporando cinza volante (CV). As propriedades medidas foram: resistência à compressão (RC) e módulo de elasticidade. Foram utilizadas relações água/cimento de 0,5 e 0,7, a CV foi incorporada como substituição parcial de cimento em 20% e 40%, e como um aditivo mineral a 10% e 20%. Os resultados indicam que a CV pode ser usada nesses concretos como um agregado miúdo inerte, pois apresenta uma resistência à compressão similar a amostra de referência. São apresentadas equações para a previsão das propriedades mecânicas.Palavras chave: cinzas volantes; agregados de calcário; absorção; resistência à compressão; módulo de elasticidade.


2013 ◽  
Vol 465-466 ◽  
pp. 1297-1303 ◽  
Author(s):  
Hassan Usman Jamo ◽  
Mohamad Zaky Noh ◽  
Zainal Arifin Ahmad

Rice Husk Ash (RHA) is a by-product of the agricultural industry which contains high amount of silica. Active silica from RHA has been used progressively to substitute quartz in a porcelain composition and the effect this substitution in relation to temperature on physical and mechanical properties has been investigated. It was found that progressive substitution of RHA in a porcelain composition resulted in early vitrification of the mixture. The compressive strength was highest and the porosity was the least at a temperature of 1200°C on 20wt% substitution of RHA. The improvement in the properties could be attributed to sharp changes in the microstructural features as a result of increase in mullite and glassy phase simultaneously. Hence the extension of study on microstructure and morphology has influence on the physical and mechanical properties.


2013 ◽  
Vol 795 ◽  
pp. 573-577 ◽  
Author(s):  
Zuraidawani Che Daud ◽  
Shamsul Baharin Jamaludin

F-75 (Co-Cr-Mo) alloy are widely used in the production of medical implants because of their excellent strength properties, hardness and also one of the biocompatible materials that very suitable in human body environment. In this research, the effect of sintering in terms of sintering temperature and sintering time has been studied by focusing on the microstructure, physical and mechanical properties of F-75 alloy. The samples were prepared by blending the starting material at 160 rpm for 30 minutes, uniaxially pressing at 500 MPa and sintering in an argon atmosphere at two sintering temperatures (1300°C and 1350°C) for four sintering times (60, 90, 120 and 150 minutes). The results show that the grains and bulk density increased with the increasing of sintering temperature and sintering times. However, opposite results were obtained for apparent porosity, hardness and compressive strength


2016 ◽  
Vol 675-676 ◽  
pp. 105-108
Author(s):  
Suchittra Inthong ◽  
Warakorn Dongnai ◽  
Uraiwan Intatha ◽  
Sukum Eitssayeam

In the present work, the effects of sintering temperature on physical and mechanical properties of HA/YSZ nanocomposites were investigated. The obtained results have been proved that the sintering temperature contributed greatly to densification and the compressive strength with the highest at 4.80 g/cm3 and 74.20 MPa for 80 wt.% of YSZ content in nanocomposites, respectively. The densification increased with increasing sintering temperature, where the compressive strength value was related with densification for the same ratio amount of YSZ. The higher the YSZ contents also significantly produced the ascendant of densification and the compressive strength.


Author(s):  
A. F. Kosach ◽  
M. A. Rashchupkina ◽  
M. A. Darulis ◽  
V. G. Gorchakov

Purpose: The aim of the paper is to obtain the cement brick having high physical and mechanical properties due to the additive based on ultrafine ash particles obtained after the wet ash discharge at Omsk power-and-heating plant. Methodology: The mechanical and mechanochemical grinding is used to generate ultrafine ash particles. Research findings: Research investigations show that the use of ultrafine ash particles the size of which varies between 0.3 and 0.9 μm, allows up to 30% cement saving and increase the physical and mechanical properties of fly ashcement and fly ash sand-lime bricks. The compressive and flexural strength of the former increases by 35 % and 32.4 %, respectively. And the compressive strength of the latter increases by 30 %, while its thermal conductivity reduces by 6.5 %. The addition of ultrafine ash particles to cement brick composition improves the ecological situation in the region. Practical implications: The proposed technique can be used in the production of cement brick with improved physical and mechanical properties. The optimum ash/cement ratio is 30:70.


Sign in / Sign up

Export Citation Format

Share Document