Effects of Sintering Temperature on Physical and Mechanical Properties of HA/YSZ Nanocomposites

2016 ◽  
Vol 675-676 ◽  
pp. 105-108
Author(s):  
Suchittra Inthong ◽  
Warakorn Dongnai ◽  
Uraiwan Intatha ◽  
Sukum Eitssayeam

In the present work, the effects of sintering temperature on physical and mechanical properties of HA/YSZ nanocomposites were investigated. The obtained results have been proved that the sintering temperature contributed greatly to densification and the compressive strength with the highest at 4.80 g/cm3 and 74.20 MPa for 80 wt.% of YSZ content in nanocomposites, respectively. The densification increased with increasing sintering temperature, where the compressive strength value was related with densification for the same ratio amount of YSZ. The higher the YSZ contents also significantly produced the ascendant of densification and the compressive strength.

2013 ◽  
Vol 795 ◽  
pp. 573-577 ◽  
Author(s):  
Zuraidawani Che Daud ◽  
Shamsul Baharin Jamaludin

F-75 (Co-Cr-Mo) alloy are widely used in the production of medical implants because of their excellent strength properties, hardness and also one of the biocompatible materials that very suitable in human body environment. In this research, the effect of sintering in terms of sintering temperature and sintering time has been studied by focusing on the microstructure, physical and mechanical properties of F-75 alloy. The samples were prepared by blending the starting material at 160 rpm for 30 minutes, uniaxially pressing at 500 MPa and sintering in an argon atmosphere at two sintering temperatures (1300°C and 1350°C) for four sintering times (60, 90, 120 and 150 minutes). The results show that the grains and bulk density increased with the increasing of sintering temperature and sintering times. However, opposite results were obtained for apparent porosity, hardness and compressive strength


2018 ◽  
Vol 7 (4.30) ◽  
pp. 271
Author(s):  
Nur Azureen Alwi Kutty ◽  
Mohamad Zaky Noh ◽  
Mohd Zul Hilmi Mayzan ◽  
Sani Garba Durumin Iya

This paper presents the study of the influence on the phase formation and strength of the porcelain by the partial substitution of fly ash. The fly ash was calcined at the temperature of 800 °C and partially substituted into feldspar. Each mixture were mixed and pressed into green pellets sintered at different sintering temperature (1100 – 1300 °C) at the interval of 50 °C for 120 min. The compressive strength, crystalline phase and the microstructure of the porcelain were investigated. The optimum physical and mechanical properties were obtained at 5 wt % of fly ash porcelain sintered at 1250 °C. The apparent porosity reaches a minimum value with 0.22 % which is nearly to zero and obtained the highest compressive strength of 105.40 MPa. The XRD results reveal that the highest percentage of mullite was obtained at the substitution of 5 wt % of fly ash with 49.0 %. The glassy phase shows an increasing trend with dissolution of mullite content which affects the strength and microstructure of the porcelain.


2012 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Djoko Purwanto

Timber Acacia mangium (Acacia mangium, Willd) for Furniture. The study aims to determine the mechanical and physical properties and the decorative value (color and fiber) wood of acacia mangium with using finishing materials. This type of finishing material used is ultran lasur natural dof ,ultran lasur classic teak, aqua politur clear dof, aqua politur akasia dan aqua politur cherry. After finishing the wood is stored for 3 months. Test parameters were observed, namely, physical and mechanical properties of wood, adhesion of finishing materials, color and appearance of the fiber, and timber dimensions expansion. The results showed that the mechanical physical properties of acacia wood qualified SNI. 01-0608-89 about the physical and mechanical properties of wood for furniture, air dry the moisture content from 13.78 to 14.89%, flexural strength from 509.25 to 680.50 kg/cm2, and compressive strength parallel to fiber 342.1 - 412.9 kg/cm2. Finishing the treatment process using five types of finishing materials can increase the decorative value (color and fiber) wood. Before finishing the process of acacia mangium wood has the appearance of colors and fibers and less attractive (scale scores 2-3), after finishing acacia wood fibers have the appearance of colors and interesting and very interesting (scale 4-5).Keywords: mangium wood, mechanical properties, decorative value, finishing, furniture.


CivilEng ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 523-540
Author(s):  
Imed Beghoura ◽  
Joao Castro-Gomes

This study focuses on the development of an alkali-activated lightweight foamed material (AA-LFM) with enhanced density. Several mixes of tungsten waste mud (TWM), grounded waste glass (WG), and metakaolin (MK) were produced. Al powder as a foaming agent was added, varying from 0.009 w.% to 0.05 w.% of precursor weight. Expanded granulated cork (EGC) particles were incorporated (10% to 40% of the total volume of precursors). The physical and mechanical properties of the foamed materials obtained, the effects of the amount of the foaming agent and the percentage of cork particles added varying from 10 vol.% to 40% are presented and discussed. Highly porous structures were obtained, Pore size and cork particles distribution are critical parameters in determining the density and strength of the foams. The compressive strength results with different densities of AA-LFM obtained by modifying the foaming agent and cork particles are also presented and discussed. Mechanical properties of the cured structure are adequate for lightweight prefabricated building elements and components.


2015 ◽  
Vol 1112 ◽  
pp. 519-523 ◽  
Author(s):  
Jarot Raharjo ◽  
Sri Rahayu ◽  
Tika Mustika ◽  
Masmui ◽  
Dwi Budiyanto

Observation on the effect of adding titanium oxide (TiO2) and magnesium oxide (MgO) on the sintering of α-alumina (Al2O3) has been performed. In this study, technical alumina used as basic material in which the sample is formed by the pressureless sintering/cold press and sintered at 1500°C which is lower than alumina sintering temperature at 1700°C. Elemental analysis, observation of microstructure, hardness, fracture toughness and density measurements were carried out to determine the physical and mechanical properties of alumina. The results indicate a change in the microstructure where the content of the platelet structure are much more than the equilateral structure. At sintering temperature of 1500°C, neck growth occurs at ceramics grain, supported by the results of the density test which indicate perfect compaction has occurred in this process.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Eethar Thanon Dawood ◽  
Mahyuddin Ramli

This study was conducted to determine some physical and mechanical properties of high-strength flowable mortar reinforced with different percentages of palm fiber (0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, and 1.6% as volumetric fractions). The density, compressive strength, flexural strength, and toughness index were tested to determine the mechanical properties of this mortar. Test results illustrate that the inclusion of this fiber reduces the density of mortar. The use of 0.6% of palm fiber increases the compressive strength and flexural strength by about 15.1%, and 16%, respectively; besides, the toughness index (I5) of the high-strength flowable mortar has been significantly enhanced by the use of 1% and more of palm fiber.


2012 ◽  
Vol 455-456 ◽  
pp. 650-654 ◽  
Author(s):  
He Yi Ge ◽  
Jian Ye Liu ◽  
Xian Qin Hou ◽  
Dong Zhi Wang

The physical and mechanical properties of nanometer ZrO2-ZrO2fiber composite ceramics were studied by introduction of ZrO2fiber. ZrO2composite ceramics at different sintering temperature was investigated by porosity and water absorption measurements, flexual strength and thermal shock resistance analysis. Results showed that ZrO2composite ceramics containing 15 wt% ZrO2fiber with sintering temperature of 1650°C exhibited good mechanical properties and thermal shock resistance. The porosity and the water absorption were 8.84% and 1.62%, respectively. The flexual strength was 975 MPa and the thermal shock times reached 31 times. Scanning electron microscope (SEM) was used to analyze the microstructure of ZrO2composite ceramics.


2015 ◽  
Vol 75 (7) ◽  
Author(s):  
Amir Arifin ◽  
Abu Bakar Sulong ◽  
Norhamidi Muhamad ◽  
Junaidi Syarif

Hydroxyapatite (HA) has been widely used in biomedical applications due to its excellent biocompatibility. However, Hydroxyapatite possesses poor mechanical properties and only tolerate limited loads for implants. Titanium is well-known materials applied in implant that has advantage in mechanical properties but poor in biocompatibility. The combination of the Titanium alloy and HA is expected to produce bio-implants with good in term of mechanical properties and biocompatabilty. In this work, interaction and mechanical properties of HA/Ti6Al4V was analyzed. The physical and mechanical properties of HA/Ti6Al4V composite powder obtained from compaction (powder metallurgy) of 60 wt.% Ti6Al4V and 40 wt.% HA and sintering at different temperatures in air were investigated in this study. Interactions of the mixed powders were investigated using X-ray diffraction. The hardness and density of the HA/Ti6Al4V composites were also measured. Based on the results of XRD analysis, the oxidation of Ti began at 700 °C. At 1000 °C, two phases were formed (i.e., TiO2 and CaTiO3). The results showed that the hardness HA/Ti6Al4V composites increased by 221.6% with increasing sintering temperature from 700oC to 1000oC. In contrast, the density of the composites decreased by 1.9% with increasing sintering temperature. 


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Neslihan Doğan-Sağlamtimur ◽  
Adnan Güven ◽  
Ahmet Bilgil

Pumice, cements (CEM I- and CEM II-type), waste fly and bottom ashes (IFA, GBA, and BBA) supplied from international companies were used to produce lightweight building materials, and physical-mechanical properties of these materials were determined. Axial compressive strength (ACS) values were found above the standards of 4 and 8 MPa (Bims Concrete (BC) 40 and 80 kgf/cm2 class) for cemented (CEM I) pumice-based samples. On the contrary, the ACS values of the pumice-based cemented (CEM II) samples could not be reached to these standards. Best ACS results (compatible with BC80) from these cemented lightweight material samples produced with the ashes were found in 50% mixing ratio as 10.6, 13.2, and 20.5 MPa for BBA + CEM I, GBA + CEM II, and IFA + CEM I, respectively, and produced with pumice were found as 8.4 MPa (same value) for GBA + pumice + CEM II (in 25% mixing ratio), BBA + pumice + CEM I (in 100% mixing ratio), and pumice + IFA + CEM I (in 100% mixing ratio), respectively. According to the results, cemented ash-based lightweight building material produced with and without pumice could widely be used for constructive purposes. As a result of this study, an important input to the ecosystem has been provided using waste ashes, whose storage constitutes a problem.


Author(s):  
Haopeng Jiang ◽  
Annan Jiang ◽  
Fengrui Zhang

Experimental tests were conducted to study the influence of natural cooling and water cooling on the physical and mechanical properties of quartz sandstone. This study aims to understand the effect of different cooling methods on the physical and mechanical properties of quartz sandstone (such as mass, volume, density, P-wave velocity, elastic modulus, uniaxial compressive strength, etc.). The results show that the uniaxial compressive strength (UCS) and elastic modulus(E) of the specimens cooled by natural-cooling and water-cooling decrease with heating temperature. At 800℃, after natural cooling and water cooling, the average value of UCS decreased by 34.65% and 57.90%, and the average value of E decreased by 87.66% and 89.05%, respectively. Meanwhile, scanning electron microscope (SEM) images were used to capture the development of microcracks and pores within the specimens after natural-cooling and water-cooling, and it was found that at the same temperature, water cooling treatment was more likely to cause microcracks and pores, which can cause more serious damage to the quartz sandstone. These results confirm that different cooling methods have different effects on the physical and mechanical properties of quartz sandstone, and provide a basis for the stability prediction of rock mass engineering such as tunnel suffering from fire.


Sign in / Sign up

Export Citation Format

Share Document