scholarly journals Enzymatic Activity and Photo-Kinetic Study of Cr(III), Mn(II), Co(II), Ni(II) and Cu(II) Complexes with Tetradentate

2018 ◽  
Vol 7 (4.37) ◽  
pp. 67
Author(s):  
Wessal M. Khamis ◽  
Suhair S.H. Mohammed ◽  
Amer H. Abdullah ◽  
Hanan Gd. Sha`aban ◽  
Shaemmaa H. Abdul Sada ◽  
...  

The Photo kinetic studies for five metal complexes of tetradentate Schiff base ligand were studied. These complexes were Chrome, Manganese, Cobalt, Nickle and Copper complexes. The kinetic values were achieved for the photoreaction and it referred to first order by in terms of complexes concentration. Three concentrations of these complexes to determined rate constant value which were determined by calculation the slope (-k) of relationship between radiation time on X-axis and natural logathirm of concentration changing on Y-axis. Values of rate constant were (0.0317min-1) for Cr-complex, (0.054min-1) for Mn-complex, (0.0706min-1) for Co-complex, (0.133min-1) for Ni-complex and (0.1211min-1) for Cu-complex. Relation between concentration on Y-axis and radiation time were showed the decreasing of concentration with time. Enzymatic study for the five complexes were achieved and showed that Cr-complex and Mn-complex showed competitive reactions and uncompetitive for Co-complex, Ni-complex and Cu-complex.  

2018 ◽  
Vol 16 (3) ◽  
pp. 347
Author(s):  
Candra Purnawan ◽  
Sayekti Wahyuningsih ◽  
Pramudita Putri Kusuma

Synthesis of graphite/PbTiO3 composite as a catalyst in photodegradation and photoelectrodegradation process of methyl orange have been conducted. The purposes of this research are to study the effect of radiation time, composition of composite, voltage and pH of solution for methyl orange degradation. Photodegradation process of methyl orange was carried out for 5; 10; 15; 20; 25 and 30 min. Ratio of graphite : PbTiO3 (w/w) were varied at 1:3; 1:2; 1:1; 2:1 and 3:1. Meanwhile, the applied voltages were 7.5; 10 and 12.5 V and the photoelectrodegradation was conducted under pH condition of 3; 7; and 11, respectively. The result showed that optimum composition of graphite/PbTiO3 in the methyl orange photodegradation was obtained at 1:1 ratio for 30 min with degradation up to 90.43% ± 0.062. The degradation reaction follows first order reaction with a rate constant of 0.0688 min-1. The optimum voltage is 10 V, in which it reduced the methyl orange concentration up to 92.65% ± 0 with a rate constant 0.0941 min-1 for first order reaction. The optimum pH is pH = 11, that provide methyl orange reduction up to 95.28% ± 0.082.


1986 ◽  
Vol 237 (2) ◽  
pp. 567-572 ◽  
Author(s):  
I Aviram ◽  
M Sharabani

The reduction with dithionite of neutrophil cytochrome b-558, implicated in superoxide generation by activated neutrophils, was investigated by a stopped-flow technique in non-ionic-detergent extracts of the membranes and in crude membrane particles. The dependence of the pseudo-first-order rate constants on the concentration of dithionite was consistent with a mechanism of reduction that involves the dithionite anion monomer SO2.- as the reactive species. The estimated second-order rate constant was 7.8 × 10(6) M-1 × S-1 for Lubrol PX-solubilized cytochrome b-558 and 5.1 × 10(6) M-1 × S-1 for the membrane-bound protein. The similarity of the kinetic constants suggests that solubilization did not introduce gross changes in the reactive site. Imidazole and p-chloromercuribenzoate, known as inhibitors of NADPH oxidase, did not affect significantly cytochrome b-558 reduction rates. The reaction rate of cytochrome b-558 with dithionite exhibited a near-zero activation energy. The first-order rate constant for reduction decreased with increasing ionic strength, indicating a positive effective charge on the reacting protein.


The rates of polymerization of ethylene on a supported chromium (VI) oxide Phillips catalysts have been measured. Catalysts were calcined in air at 460 °C and activated by pretreatment with ethylene at 300 °C. With increasing pretreatment times the activity of the catalyst increased to a maximum, after which over-reduction occurred and the activity fell. The products of the pretreatment process were water, carbon dioxide and a trace of butenes. Rates of polymerization were first order in ethylene pressure over the temperature range studied ( – 95 to 150 °C). The first order rate constant was sensitive to the initial pressure of ethylene added to the catalyst at the temperature at which the polymerization reaction was carried out. The results are explicable in terms of the production of active centres in the catalyst surface during contact with ethylene at 300 °C. Subsequent evacuation at 300 °C produced from some of these centres sites which had to be reactivated by adsorption of ethylene at low temperatures. The extent of re-activation increased with increasing ethylene pressure. The variation of first order rate constant with temperature showed a maximum at ca . – 23 °C and an apparent activation energy of 0.8 kJ mol -1 for the range –95 to – 23 °C. At temperatures above 227 °C the rate of polymerization was extremely slow.


Author(s):  
Kamlesh Dashora ◽  
Shailendra Saraf ◽  
Swarnalata Saraf

Sustained released tablets of diclofenac sodium (DIC) and tizanidine hydrochloride (TIZ) were prepared by using different proportions of cellulose acetate (CA) as the retardant material. Nine formulations of tablets having different proportion of microparticles developed by varied proportions of polymer: drug ratio ‘’i.e.’’; 1:9 -1:3 for DIC and 1:1 – 3:1 for TIZ. Each tablet contained equivalent to 100 mg of DIC and 6mg of TIZ. The prepared microparticles were white, free flowing and spherical in shape (SEM study), with  the particle size varying from 78.8±1.94 to 103.33±1.28 µm and 175.92± 9.82 to 194.94±14.28µm for DIC  and TIZ, respectively.  The first order rate constant K1 of formulations were found to be in the range of  K1 = 0.117-0.272 and 0.083- 0.189 %hr-1for DIC and TIZ, respectively. The value of exponent coefficient (n) was found to be in the range of 0.6328-0.9412  and 0.8589-1.1954 for DIC and TIZ respectively indicates anomalous  to  non anomalous transport type of diffusions among different formulations


1992 ◽  
Vol 57 (9) ◽  
pp. 1951-1959 ◽  
Author(s):  
Madlene L. Iskander ◽  
Samia A. El-Abbady ◽  
Alyaa A. Shalaby ◽  
Ahmed H. Moustafa

The reactivity of the base induced cyclodimerization of 1-(6-arylpyridazin-3-yl)-3-oxidopyridinium chlorides in a pericyclic process have been investigated kinetically at λ 380 nm. The reaction was found to be second order with respect to the liberated betaine and zero order with respect to the base. On the other hand dedimerization (monomer formation) was found to be first order. It was shown that dimerization is favoured at low temperature, whereas dedimerization process is favoured at relatively high temperature (ca 70 °C). Solvent effects on the reaction rate have been found to follow the order ethanol > chloroform ≈ 1,2-dichloroethane. Complete dissociation was accomplished only in 1,2-dichloroethane at ca 70 °C. The thermodynamic activation parameters have been calculated by a standard method. Thus, ∆G# has been found to be independent on substituents and solvents. The high negative values of ∆S# supports the cyclic transition state which is in favour with the concerted mechanism. MO calculations using SCF-PPP approximation method indicated low HOMO-LUMO energy gap of the investigated betaines.


2019 ◽  
Vol 292 ◽  
pp. 01063
Author(s):  
Lubomír Macků

An alternative method of determining exothermic reactor model parameters which include first order reaction rate constant is described in this paper. The method is based on known in reactor temperature development and is suitable for processes with changing quality of input substances. This method allows us to evaluate the reaction substances composition change and is also capable of the reaction rate constant (parameters of the Arrhenius equation) determination. Method can be used in exothermic batch or semi- batch reactors running processes based on the first order reaction. An example of such process is given here and the problem is shown on its mathematical model with the help of simulations.


2005 ◽  
Vol 09 (03) ◽  
pp. 198-205 ◽  
Author(s):  
Fabrizio Monacelli ◽  
Elisa Viola

The oxo-bridged complex ( py ) FePc - O - FePc ( py ) ( py = pyridine , Pc = phthalocyaninato dianion) reacts in dichloromethane with hydrogen sulphide giving elementary sulphur and the reduced ( py )2( FePc ) complex in the stoichiometric ratio 1:1. Under excess py and H2S , the reaction is first-order and the rate constant at a given py concentration is an increasing function of the reducing agent concentration, with asymptotic tendency to a limiting value. This latter depends on the pyridine concentration being higher the lower is the base concentration. When the reaction is carried out in pure pyridine, the rate constant is, instead, a strictly linear function of [ H2S ], with zero intercept. A reaction mechanism is proposed where the dichloromethane is directly involved in the axial coordination about the iron centers and H2S competes efficiently with both pyridine and solvent.


1975 ◽  
Vol 149 (3) ◽  
pp. 627-635 ◽  
Author(s):  
S S Chen ◽  
P C Engel

1. The inactivation of horse liver alcohol dehydrogenase by pyridoxal 5'-phosphate in phosphate buffer, pH8, at 10°C was investigated. Activity declines to a minimum value determined by the pyridoxal 5'-phosphate concentration. The maximum inactivation in a single treatment is 75%. This limit appears to be set by the ratio of the first-order rate constants for interconversion of inactive covalently modified enzyme and a readily dissociable non-covalent enzyme-modifier complex. 2. Reactivation was virtually complete on 150-fold dilution: first-order analysis yielded an estimate of the rate constant (0.164min-1), which was then used in the kinetic analysis of the forward inactivation reaction. This provided estimates for the rate constant for conversion of non-covalent complex into inactive enzyme (0.465 min-1) and the dissociation constant of the non-covalent complex (2.8 mM). From the two first-order constants, the minimum attainable activity in a single cycle of treatment may be calculated as 24.5%, very close to the observed value. 3. Successive cycles of modification followed by reduction with NaBH4 each decreased activity by the same fraction, so that three cycles with 3.6 mM-pyridoxal 5'-phosphate decreased specific activity to about 1% of the original value. The absorption spectrum of the enzyme thus treated indicated incorporation of 2-3 mol of pyridoxal 5'-phosphate per mol of subunit, covalently bonded to lysine residues. 4. NAD+ and NADH protected the enzyme completely against inactivation by pyridoxal 5'-phosphate, but ethanol and acetaldehyde were without effect. 5. Pyridoxal 5'-phosphate used as an inhibitor in steady-state experiments, rather than as an inactivator, was non-competitive with respect to both NADH and acetaldehyde. 6. The partially modified enzyme (74% inactive) showed unaltered apparent Km values for NAD+ and ethanol, indicating that modified enzyme is completely inactive, and that the residual activity is due to enzyme that has not been covalently modified. 7. Activation by methylation with formaldehyde was confirmed, but this treatment does not prevent subsequent inactivation with pyridoxal 5'-phosphate. Presumably different lysine residues are involved. 8. It is likely that the essential lysine residue modified by pyridoxal 5'-phosphate is involved either in binding the coenzymes or in the catalytic step. 9. Less detailed studies of yeast alcohol dehydrogenase suggest that this enzyme also possesses an essential lysine residue.


2006 ◽  
Vol 71 (3) ◽  
pp. 411-422 ◽  
Author(s):  
David Havlíček ◽  
Libor Turek ◽  
Jiří Plocek ◽  
Zdeněk Mička

Solubility in the (Me4N)2SeO4-H2SeO4-H2O and (Me4N)2SeO4-Li2SeO4-H2O systems were studied. The new compounds, tetramethylammonium hydrogenselenate monohydrate ((Me4N)HSeO4·H2O) and lithium tetramethylammonium selenate tetrahydrate (Li(Me4N)SeO4·4H2O), have been found in these systems. Both substances were characterised by chemical analysis and IR molecular spectroscopy. Both of the title substances decompose under the influence of X-radiation and, thus, their structures cannot be determined. The radiolysis of both substances was studied in greater detail. Tetramethylammonium hydrogenselenate monohydrate is dehydrated by X-radiation to form the anhydrous salt. The reaction is controlled by first-order kinetics with a rate constant of 1.30(3) × 10-3 s-1.


1996 ◽  
Vol 50 (11) ◽  
pp. 1352-1359 ◽  
Author(s):  
Ping Chiang ◽  
Kuang-Pang Li ◽  
Tong-Ming Hseu

An idealized model for the kinetics of benzo[ a]pyrene (BaP) metabolism is established. As observed from experimental results, the BaP transfer from microcrystals to the cell membrane is definitely a first-order process. The rate constant of this process is signified as k1. We describe the surface–midplane exchange as reversible and use rate constants k2 and k3 to describe the inward and outward diffusions, respectively. The metabolism is identified as an irreversible reaction with a rate constant k4. If k2 and k3 are assumed to be fast and not rate determining, the effect of the metabolism rate, k4, on the number density of BaP in the midplane of the microsomal membrane, m3, can be estimated. If the metabolism rate is faster than or comparable to the distribution rates, k2 and k3, the BaP concentration in the membrane midplane, m3, will quickly be dissipated. But if k4 is extremely small, m3 will reach a plateau. Under conditions when k2 and k3 also play significant roles in determining the overall rate, more complicated patterns of m3 are expected.


Sign in / Sign up

Export Citation Format

Share Document