Comparison of Manufacturing Data Analysis For 5 & 3-Axis Vertical Machining Center for the Time and Tool Benefits of Industries

2018 ◽  
Vol 7 (4.5) ◽  
pp. 196 ◽  
Author(s):  
S. P. Sundar Singh Sivam ◽  
K. Saravanan ◽  
N. Pradeep ◽  
S. Rajendra Kumar ◽  
Sathiyamoorthy Karuppiah

The dawn of globalization of business and competitiveness in manufacturing has forced firms to enhance their manufacturing facilities to reply to plug necessities. One of the crucial factors for this is often machine evaluation that involves a crucial decision using general and obscure information. The Primarily mass production aims high productivity so as to reduce cost and interchangeability to facilitate simple assembly which necessitates the production devices to increase the speed of manufacture. Across the business, the assembly challenges pivot around cutting lead times, increasing throughout and obtaining products to market as quickly as possible alongside some less challenging problems like shorter runs, higher product combine, tighter tolerances, a lot of complicated geometries in harder materials, and complete machining during a single handling. Advancements in technology have resulted in a creation of a lot of responsive tools referred to as MTM systems that are computer numerical Control (CNC) systems capable of acting a variety of operations with multiple tools and spindles in a single setup. The following project aims at reduction of manufacturing cost by modifying the process layout and operational parameters by novel approach for an identical element for 3 and 5- Axis Vertical Machining center. Nowadays, machining layout and operational sequence plays a significant role in automotive business to produce products at competitive price in market which consists of Machines, Tools, fixtures, computer interface, trained professionals and form of products. MAKINO PS60 is a Multi axis CNC machine (BRIDGE PORT), that helps to perform the machining operations on the roles at 5 totally different axes to create the required profiles whose implementation can pave means for a few terribly important benefits like, seven machines are replaced by Single machine, Man power are reduced from 9 to 3 per day, Tools usage reduced from 40 to 30 per day & production cost can reduce up to 60%.  

2013 ◽  
Vol 584 ◽  
pp. 208-213 ◽  
Author(s):  
Zhe Liu ◽  
Jing Chuan Dong ◽  
Tai Yong Wang ◽  
Bo Li ◽  
Yu Long Cui

From the middle of the 20th century, CNC(Computer numerical control) machine tool has brought a revolutionary change to the mechanical manufacturing industry. CNC machine tool is a kind of highly mechatronics product. It has the Characteristic of high precision and high productivity. Therefore it develops quite fast and improves various kind of the quality of the products. It speeds up the development of machinery industry. In order to meet the requirements of the processing accuracy and speed of modern society, the structure and components of the machine have also become complicated. In order to protect the safety of operators and reduce time of machine repaired as well as improve efficiency, the requirements of the reliability of CNC machine tool should be greatly improved. This study will briefly introduce the concept of reliability and put forward some measures to improve the reliability.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5663
Author(s):  
Piotr Jaskólski ◽  
Krzysztof Nadolny ◽  
Krzysztof Kukiełka ◽  
Wojciech Kapłonek ◽  
Danil Yurievich Pimenov ◽  
...  

In the literature, there are a small number of publications regarding the construction and application of machine tools that integrate several machining operations. Additionally, solutions that allow for such integration for complex operations, such as the machining of shape surfaces with complex contours, are relatively rare. The authors of this article carried out dimensional analysis of workpieces machined using a prototype Computerized Numerical Control (CNC) machine tool that integrates the possibilities of 3D scanning, milling operations in three axes, and grinding operations using abrasive discs. The general description of this machine tool with developed methodology and the most interesting results obtained during the experimental studies are given. For a comparative analysis of the influence of the machining method on the geometric accuracy of the test pieces, an Analysis of Variance (ANOVA) was carried out. The obtained results show that for four considered features (deviations of flatness, vertical parallelism, opening dimensions, and opening cylindricality), no statistically significant differences were detected. For the evaluation criteria, the probability level p exceeded the assumed confidence level α = 0.05 and ranged from p = 0.737167 to p = 0.076764. However, such differences were found for two others—a dimensional deviation between flat surfaces (p = 0.010467) and horizontal parallelism deviation (p = 0.0)—as well as for the quality of the machined surface defined by four surface texture parameters: Ra (p = 0.831797), Rt (p = 0.759636), Rq (p = 0.867222), and Rz (p = 0.651896). The information obtained by the ANOVA will be useful for the elimination the weaknesses of the prototype machine tool, further analysis of technological strategies, and to find possible benefits of integrating machining operations.


2016 ◽  
Vol 10 (2) ◽  
pp. 162-171
Author(s):  
Hafid Hafid ◽  
Tatang Sutisna

The design and manufacturing of the rotary table with the specification Ø 170 mm (6 inches) for CNC machine 4 axis has been done. The objective of manufacturing a rotary table is to increase the efficiency of CNC machine Hardford 4 axis to be above 80% in line machining center CV. IM’s workshop. The engineering methods was taken, consist of: working preparation, manufacturing of working drawing, engineering process, the manufacturing and testing. The prototype has been tested and operated, the resulting of increasing productivity of which were as follows: the process of assembling was increased to be 3 time ( before 1 time) and processing time for a specific case reduced from 5 hours to 3 hours, number of operators for the case of assembling the rotary reduced to 1 person (before 4 persons), safety and security become to be better. The results show increased efficiency of CNC machine Hardford, from under 50% to be above 80%. Based on the economical analysis obtained by the cost of good sold (C.G.S) of the rotary table is IDR 34.060.000. The results presented in this paper is expected to be case study for developing a business of the metal and engineering SMEs domestic to the effort of improving efficiency, quality, productivity and competitiveness in global market.ABSTRAKPerancangan dan pembuatan alat bantu meja putar (rotary table) dengan spesifikasi teknis Ø 170 mm (6 inci) untuk mesin CNC 4 axis telah dilakukan. Tujuan pembuatan rotary table adalah untuk meningkatkan efisiensi mesin CNC Hardford 4 axis di atas 80% pada line machining center Bengkel CV. IM. Metode rancang bangun yang dilakukan, meliputi: persiapan kerja, pembuatan gambar kerja, proses engineering, pembuatan dan uji coba. Prototip tersebut telah diuji coba dan dioperasikan dengan hasil peningkatan produktivitas sebagai berikut: proses pengerjaan bongkar pasang meningkat menjadi 3 kali (sebelumnya 1 kali) dan waktu pengerjaan untuk kasus tertentu berkurang dari 5 jam menjadi 3 jam, jumlah operator untuk kasus bongkar pasang rotary berkurang menjadi 1 orang (sebelumnya 4 orang), keselamatan kerja dan keamanan menjadi lebih baik. Hasil peningkatan berupa efisiensi mesin CNC Hardford 4 axis dari sebelumnya di bawah 50% menjadi di atas 80%. Berdasarkan hasil perhitungan analisis ekonomi diperoleh harga pokok produksi (HPP) alat bantu meja putar adalah sebesar Rp. 34.060.000. Bahasan ini diharapkan menjadi contoh kasus bagi pengembangan usaha IKM logam dan mesin dalam negeri untuk meningkatkan efisiensi, mutu, produktivitas dan keunggulan daya saing di pasar global.Kata kunci: alat bantu meja putar, mesin CNC, harga pokok produksi


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3819
Author(s):  
Ting-Hsun Lan ◽  
Yu-Feng Chen ◽  
Yen-Yun Wang ◽  
Mitch M. C. Chou

The computer-aided design/computer-aided manufacturing (CAD/CAM) fabrication technique has become one of the hottest topics in the dental field. This technology can be applied to fixed partial dentures, removable dentures, and implant prostheses. This study aimed to evaluate the feasibility of NaCaPO4-blended zirconia as a new CAD/CAM material. Eleven different proportional samples of zirconia and NaCaPO4 (xZyN) were prepared and characterized by X-ray diffractometry (XRD) and Vickers microhardness, and the milling property of these new samples was tested via a digital optical microscope. After calcination at 950 °C for 4 h, XRD results showed that the intensity of tetragonal ZrO2 gradually decreased with an increase in the content of NaCaPO4. Furthermore, with the increase in NaCaPO4 content, the sintering became more obvious, which improved the densification of the sintered body and reduced its porosity. Specimens went through milling by a computer numerical control (CNC) machine, and the marginal integrity revealed that being sintered at 1350 °C was better than being sintered at 950 °C. Moreover, 7Z3N showed better marginal fit than that of 6Z4N among thirty-six samples when sintered at 1350 °C (p < 0.05). The milling test results revealed that 7Z3N could be a new CAD/CAM material for dental restoration use in the future.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 911
Author(s):  
Vlad Mihaly ◽  
Mircea Şuşcă ◽  
Dora Morar ◽  
Mihai Stănese ◽  
Petru Dobra

The current article presents a design procedure for obtaining robust multiple-input and multiple-output (MIMO) fractional-order controllers using a μ-synthesis design procedure with D–K iteration. μ-synthesis uses the generalized Robust Control framework in order to find a controller which meets the stability and performance criteria for a family of plants. Because this control problem is NP-hard, it is usually solved using an approximation, the most common being the D–K iteration algorithm, but, this approximation leads to high-order controllers, which are not practically feasible. If a desired structure is imposed to the controller, the corresponding K step is a non-convex problem. The novelty of the paper consists in an artificial bee colony swarm optimization approach to compute the nearly optimal controller parameters. Further, a mixed-sensitivity μ-synthesis control problem is solved with the proposed approach for a two-axis Computer Numerical Control (CNC) machine benchmark problem. The resulting controller using the described algorithm manages to ensure, with mathematical guarantee, both robust stability and robust performance, while the high-order controller obtained with the classical μ-synthesis approach in MATLAB does not offer this.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2913
Author(s):  
Rafał Gołębski ◽  
Piotr Boral

Classic methods of machining cylindrical gears, such as hobbing or circumferential chiseling, require the use of expensive special machine tools and dedicated tools, which makes production unprofitable, especially in small and medium series. Today, special attention is paid to the technology of making gears using universal CNC (computer numerical control) machine tools with standard cheap tools. On the basis of the presented mathematical model, a software was developed to generate a code that controls a machine tool for machining cylindrical gears with straight and modified tooth line using the multipass method. Made of steel 16MnCr5, gear wheels with a straight tooth line and with a longitudinally modified convex-convex tooth line were machined on a five-axis CNC milling machine DMG MORI CMX50U, using solid carbide milling cutters (cylindrical and ball end) for processing. The manufactured gears were inspected on a ZEISS coordinate measuring machine, using the software Gear Pro Involute. The conformity of the outline, the tooth line, and the gear pitch were assessed. The side surfaces of the teeth after machining according to the planned strategy were also assessed; the tests were carried out using the optical microscope Alicona Infinite Focus G5 and the contact profilographometer Taylor Hobson, Talysurf 120. The presented method is able to provide a very good quality of machined gears in relation to competing methods. The great advantage of this method is the use of a tool that is not geometrically related to the shape of the machined gear profile, which allows the production of cylindrical gears with a tooth and profile line other than the standard.


2021 ◽  
Vol 13 (3) ◽  
pp. 168781402110027
Author(s):  
Byung Chul Kim ◽  
Ilhwan Song ◽  
Duhwan Mun

Manufacturers of machine parts operate computerized numerical control (CNC) machine tools to produce parts precisely and accurately. They build computer-aided manufacturing (CAM) models using CAM software to generate code to control these machines from computer-aided design (CAD) models. However, creating a CAM model from CAD models is time-consuming, and is prone to errors because machining operations and their sequences are defined manually. To generate CAM models automatically, feature recognition methods have been studied for a long time. However, since the recognition range is limited, it is challenging to apply the feature recognition methods to parts having a complicated shape such as jet engine parts. Alternatively, this study proposes a practical method for the fast generation of a CAM model from CAD models using shape search. In the proposed method, when an operator selects one machining operation as a source machining operation, shapes having the same machining features are searched in the part, and the source machining operation is copied to the locations of the searched shapes. This is a semi-automatic method, but it can generate CAM models quickly and accurately when there are many identical shapes to be machined. In this study, we demonstrate the usefulness of the proposed method through experiments on an engine block and a jet engine compressor case.


2011 ◽  
Vol 105-107 ◽  
pp. 2217-2220
Author(s):  
Mu Lan Wang ◽  
Jian Min Zuo ◽  
Kun Liu ◽  
Xing Hua Zhu

In order to meet the development demands for high-speed and high-precision of Computer Numerical Control (CNC) machine tools, the equipped CNC systems begin to employ the technical route of software hardening. Making full use of the advanced performance of Large Scale Integrated Circuits (LSIC), this paper puts forward using Field Programmable Gates Array (FPGA) for the functional modules of CNC system, which is called Intelligent Software Hardening Chip (ISHC). The CNC system architecture with high performance is constructed based on the open system thought and ISHCs. The corresponding programs can be designed with Very high speed integrate circuit Hardware Description Language (VHDL) and downloaded into the FPGA. These hardening modules, including the arithmetic module, contour interpolation module, position control module and so on, demonstrate that the proposed schemes are reasonable and feasibility.


2013 ◽  
Vol 13 (2) ◽  
pp. 94-99 ◽  
Author(s):  
Shaosheng Fan ◽  
Qingchang Zhong

The prediction of fouling in condenser is heavily influenced by the periodic fouling process and dynamics change of the operational parameters, to deal with this problem, a novel approach based on fuzzy stage identification and Chebyshev neural network is proposed. In the approach, the overall fouling is separated into hard fouling and soft fouling, the variation trends of these two kinds of fouling are approximated by using Chebyshev neural network, respectively, in order to make the prediction model more accurate and robust, a fuzzy stage identification method and adaptive algorithm considering external disturbance are introduced, based on the approach, a prediction model is constructed and experiment on an actual condenser is carried out, the results show the proposed approach is more effective than asymptotic fouling model and adaptive parameter optimization prediction model.


Author(s):  
Shao-ying Ren ◽  
Yan-zhong Wang ◽  
Yuan Li

This article presents a method of design, manufacturing, and measuring S-gear. S-gear is a kind of gear whose tooth profile is an S-shaped curve. The sine (cosine) gear, cycloid gear, polynomial gear, and circular arc gear are all S-gears in essence. In the S-gear transmission, the concave surface of one gear and the convex surface of the other gear contact each other. Therefore, the power transmitted by S-gear is much larger than that of the convex-convex-contact involute gear. Some scholars have studied the characteristics of S-gear, but few have explored its manufacturing. In this article, the Numerical Control (NC) machining technology of S-gear is studied in detail for its industrial application. The polynomial curve is used to construct the tooth profile of the S-gear based on the Gear Meshing Theory. The mathematical model of polynomial S-gear is established, by which involute gear can be represented as a special S-gear. The steps of generating NC codes are described. Then, the S-gear sample is processed with an NC machining center. Finally, the sample is measured with a Coordinate Measuring Machine (CMM), and the measurement results show that the accuracy of the S-gear processed by the NC machining center reaches ISO6. This research provides a feasible approach for the design, manufacturing, and measuring of S-gear.


Sign in / Sign up

Export Citation Format

Share Document