scholarly journals Predicting Breast Cancer: A Comparative Analysis of Machine Learning Algorithms

Author(s):  
Pulung Hendro Prastyo ◽  
I Gede Yudi Paramartha ◽  
Michael S. Moses Pakpahan ◽  
Igi Ardiyanto

Breast cancer is the most common cancer among women (43.3 incidents per 100.000 women), with the highest mortality (14.3 incidents per 100.000 women). Early detection is critical for survival. Using machine learning approaches, the problem can be effectively classified, predicted, and analyzed. In this study, we compared eight machine learning algorithms: Gaussian Naïve Bayes (GNB), k-Nearest Neighbors (K-NN), Support Vector Machine(SVM), Random Forest (RF), AdaBoost, Gradient Boosting (GB), XGBoost, and Multi-Layer Perceptron (MLP). The experiment is conducted using Breast Cancer Wisconsin datasets, confusion matrix, and 5-folds cross-validation. Experimental results showed that XGBoost provides the best performance. XGBoost obtained accuracy (97,19%), recall (96,75%), precision (97,28%), F1-score (96,99%), and AUC (99,61%). Our result showed that XGBoost is the most effective method to predict breast cancer in the Breast Cancer Wisconsin dataset.

Author(s):  
Madhuri Maru ◽  
Saket Swarndeep

Breast cancer represents one of the diseases that make a high number of deaths every year. It is the most common type of all cancers and the main cause of women's deaths worldwide. Classification and data mining methods are an effective way to classify data. Especially in medical field, where those methods are widely used in diagnosis and analysis to make decisions. Here, a common misconception is that predictive analytics and machine learning are the same thing where in predictive analysis is a statistical learning and machine learning is pattern recognition and explores the notion that algorithms can learn from and make predictions on data. In this paper, we are addressing the problem of predictive analysis by adding machine learning techniques for better prediction of breast cancer. In this, a performance comparison between different machine learning algorithms: Support Vector Machine (SVM), Decision Tree (C4.5), Naive Bayes (NB) and k Nearest Neighbors (k-NN) on the Wisconsin Breast Cancer (original) datasets is conducted. The main objective is to assess the correctness in classifying data with respect to efficiency and effectiveness of hybrid algorithm in terms of accuracy, precision, sensitivity and specificity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shuyun He ◽  
Duancheng Zhao ◽  
Yanle Ling ◽  
Hanxuan Cai ◽  
Yike Cai ◽  
...  

Breast cancer (BC) has surpassed lung cancer as the most frequently occurring cancer, and it is the leading cause of cancer-related death in women. Therefore, there is an urgent need to discover or design new drug candidates for BC treatment. In this study, we first collected a series of structurally diverse datasets consisting of 33,757 active and 21,152 inactive compounds for 13 breast cancer cell lines and one normal breast cell line commonly used in in vitro antiproliferative assays. Predictive models were then developed using five conventional machine learning algorithms, including naïve Bayesian, support vector machine, k-Nearest Neighbors, random forest, and extreme gradient boosting, as well as five deep learning algorithms, including deep neural networks, graph convolutional networks, graph attention network, message passing neural networks, and Attentive FP. A total of 476 single models and 112 fusion models were constructed based on three types of molecular representations including molecular descriptors, fingerprints, and graphs. The evaluation results demonstrate that the best model for each BC cell subtype can achieve high predictive accuracy for the test sets with AUC values of 0.689–0.993. Moreover, important structural fragments related to BC cell inhibition were identified and interpreted. To facilitate the use of the model, an online webserver called ChemBC (http://chembc.idruglab.cn/) and its local version software (https://github.com/idruglab/ChemBC) were developed to predict whether compounds have potential inhibitory activity against BC cells.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Matthijs Blankers ◽  
Louk F. M. van der Post ◽  
Jack J. M. Dekker

Abstract Background Accurate prediction models for whether patients on the verge of a psychiatric criseis need hospitalization are lacking and machine learning methods may help improve the accuracy of psychiatric hospitalization prediction models. In this paper we evaluate the accuracy of ten machine learning algorithms, including the generalized linear model (GLM/logistic regression) to predict psychiatric hospitalization in the first 12 months after a psychiatric crisis care contact. We also evaluate an ensemble model to optimize the accuracy and we explore individual predictors of hospitalization. Methods Data from 2084 patients included in the longitudinal Amsterdam Study of Acute Psychiatry with at least one reported psychiatric crisis care contact were included. Target variable for the prediction models was whether the patient was hospitalized in the 12 months following inclusion. The predictive power of 39 variables related to patients’ socio-demographics, clinical characteristics and previous mental health care contacts was evaluated. The accuracy and area under the receiver operating characteristic curve (AUC) of the machine learning algorithms were compared and we also estimated the relative importance of each predictor variable. The best and least performing algorithms were compared with GLM/logistic regression using net reclassification improvement analysis and the five best performing algorithms were combined in an ensemble model using stacking. Results All models performed above chance level. We found Gradient Boosting to be the best performing algorithm (AUC = 0.774) and K-Nearest Neighbors to be the least performing (AUC = 0.702). The performance of GLM/logistic regression (AUC = 0.76) was slightly above average among the tested algorithms. In a Net Reclassification Improvement analysis Gradient Boosting outperformed GLM/logistic regression by 2.9% and K-Nearest Neighbors by 11.3%. GLM/logistic regression outperformed K-Nearest Neighbors by 8.7%. Nine of the top-10 most important predictor variables were related to previous mental health care use. Conclusions Gradient Boosting led to the highest predictive accuracy and AUC while GLM/logistic regression performed average among the tested algorithms. Although statistically significant, the magnitude of the differences between the machine learning algorithms was in most cases modest. The results show that a predictive accuracy similar to the best performing model can be achieved when combining multiple algorithms in an ensemble model.


2019 ◽  
Author(s):  
Matthijs Blankers ◽  
Louk F. M. van der Post ◽  
Jack J. M. Dekker

Abstract Background: It is difficult to accurately predict whether a patient on the verge of a potential psychiatric crisis will need to be hospitalized. Machine learning may be helpful to improve the accuracy of psychiatric hospitalization prediction models. In this paper we evaluate and compare the accuracy of ten machine learning algorithms including the commonly used generalized linear model (GLM/logistic regression) to predict psychiatric hospitalization in the first 12 months after a psychiatric crisis care contact, and explore the most important predictor variables of hospitalization. Methods: Data from 2,084 patients with at least one reported psychiatric crisis care contact included in the longitudinal Amsterdam Study of Acute Psychiatry were used. The accuracy and area under the receiver operating characteristic curve (AUC) of the machine learning algorithms were compared. We also estimated the relative importance of each predictor variable. The best and least performing algorithms were compared with GLM/logistic regression using net reclassification improvement analysis. Target variable for the prediction models was whether or not the patient was hospitalized in the 12 months following inclusion in the study. The 39 predictor variables were related to patients’ socio-demographics, clinical characteristics and previous mental health care contacts. Results: We found Gradient Boosting to perform the best (AUC=0.774) and K-Nearest Neighbors performing the least (AUC=0.702). The performance of GLM/logistic regression (AUC=0.76) was above average among the tested algorithms. Gradient Boosting outperformed GLM/logistic regression and K-Nearest Neighbors, and GLM outperformed K-Nearest Neighbors in a Net Reclassification Improvement analysis, although the differences between Gradient Boosting and GLM/logistic regression were small. Nine of the top-10 most important predictor variables were related to previous mental health care use. Conclusions: Gradient Boosting led to the highest predictive accuracy and AUC while GLM/logistic regression performed average among the tested algorithms. Although statistically significant, the magnitude of the differences between the machine learning algorithms was modest. Future studies may consider to combine multiple algorithms in an ensemble model for optimal performance and to mitigate the risk of choosing suboptimal performing algorithms.


Author(s):  
Sheela Rani P ◽  
Dhivya S ◽  
Dharshini Priya M ◽  
Dharmila Chowdary A

Machine learning is a new analysis discipline that uses knowledge to boost learning, optimizing the training method and developing the atmosphere within which learning happens. There square measure 2 sorts of machine learning approaches like supervised and unsupervised approach that square measure accustomed extract the knowledge that helps the decision-makers in future to require correct intervention. This paper introduces an issue that influences students' tutorial performance prediction model that uses a supervised variety of machine learning algorithms like support vector machine , KNN(k-nearest neighbors), Naïve Bayes and supplying regression and logistic regression. The results supported by various algorithms are compared and it is shown that the support vector machine and Naïve Bayes performs well by achieving improved accuracy as compared to other algorithms. The final prediction model during this paper may have fairly high prediction accuracy .The objective is not just to predict future performance of students but also provide the best technique for finding the most impactful features that influence student’s while studying.


Author(s):  
Harsha A K

Abstract: Since the advent of encryption, there has been a steady increase in malware being transmitted over encrypted networks. Traditional approaches to detect malware like packet content analysis are inefficient in dealing with encrypted data. In the absence of actual packet contents, we can make use of other features like packet size, arrival time, source and destination addresses and other such metadata to detect malware. Such information can be used to train machine learning classifiers in order to classify malicious and benign packets. In this paper, we offer an efficient malware detection approach using classification algorithms in machine learning such as support vector machine, random forest and extreme gradient boosting. We employ an extensive feature selection process to reduce the dimensionality of the chosen dataset. The dataset is then split into training and testing sets. Machine learning algorithms are trained using the training set. These models are then evaluated against the testing set in order to assess their respective performances. We further attempt to tune the hyper parameters of the algorithms, in order to achieve better results. Random forest and extreme gradient boosting algorithms performed exceptionally well in our experiments, resulting in area under the curve values of 0.9928 and 0.9998 respectively. Our work demonstrates that malware traffic can be effectively classified using conventional machine learning algorithms and also shows the importance of dimensionality reduction in such classification problems. Keywords: Malware Detection, Extreme Gradient Boosting, Random Forest, Feature Selection.


2021 ◽  
Author(s):  
Melih Agraz ◽  
Umut Agyuz ◽  
E. Celeste Welch ◽  
Kaymaz Yasin ◽  
Kuyumcu Birol

Abstract Background Metastasis is one of the most challenging problems in cancer diagnosis and treatment, as its causes have not been yet well characterized. Prediction of the metastatic status of breast cancer is important in cancer research because it has the potential to save lives. However, the systems biology behind metastasis is complex and driven by a variety of factors beyond those that have already been characterized for various cancer types. Furthermore, prediction of cancer metastasis is a challenging task due to the variation in parameters and conditions specific to individual patients and mutation of the sub-types. Results In this paper, we apply tree-based machine learning algorithms for gene expression data analysis in the estimation of metastatic potentials within a group of 490 breast cancer patients. Hence, we utilize tree-based machine learning algorithms, decision trees, gradient boosting, and extremely randomized trees to assess the variable importance.Conclusions We obtained highly accurate values from all three algorithms, we observed the highest accuracy from the Gradient Boost method which is 0.8901. Finally, we were able to determine the 10 most important genetic variables used in the boosted algorithms, as well as their respective importance scores and biological importance. Common important genes for our algorithms are found as CD8, PB1, THP-1. CD8, also known as CD8A is a receptor for the TCR, or T-cell receptor, which facilitates cytotoxic T-cell activity and its association with cancer is defined in the paper. PB1, PBRM1 or polybromo 1 is a tumor suppressor gene. THP-1 or GLI2 is a zinc finger protein referred to as ”Glioma-Associated Oncogene Family Zinc Finger 2”. This gene encodes a protein for the zinc finger, which binds DNA and mediate Sonic hedgehog signaling (SHH). Disruption in the SHH pathway have long been associated with cancer and cellular proliferation.


2020 ◽  
Vol 9 (9) ◽  
pp. 507
Author(s):  
Sanjiwana Arjasakusuma ◽  
Sandiaga Swahyu Kusuma ◽  
Stuart Phinn

Machine learning has been employed for various mapping and modeling tasks using input variables from different sources of remote sensing data. For feature selection involving high- spatial and spectral dimensionality data, various methods have been developed and incorporated into the machine learning framework to ensure an efficient and optimal computational process. This research aims to assess the accuracy of various feature selection and machine learning methods for estimating forest height using AISA (airborne imaging spectrometer for applications) hyperspectral bands (479 bands) and airborne light detection and ranging (lidar) height metrics (36 metrics), alone and combined. Feature selection and dimensionality reduction using Boruta (BO), principal component analysis (PCA), simulated annealing (SA), and genetic algorithm (GA) in combination with machine learning algorithms such as multivariate adaptive regression spline (MARS), extra trees (ET), support vector regression (SVR) with radial basis function, and extreme gradient boosting (XGB) with trees (XGbtree and XGBdart) and linear (XGBlin) classifiers were evaluated. The results demonstrated that the combinations of BO-XGBdart and BO-SVR delivered the best model performance for estimating tropical forest height by combining lidar and hyperspectral data, with R2 = 0.53 and RMSE = 1.7 m (18.4% of nRMSE and 0.046 m of bias) for BO-XGBdart and R2 = 0.51 and RMSE = 1.8 m (15.8% of nRMSE and −0.244 m of bias) for BO-SVR. Our study also demonstrated the effectiveness of BO for variables selection; it could reduce 95% of the data to select the 29 most important variables from the initial 516 variables from lidar metrics and hyperspectral data.


2021 ◽  
Author(s):  
Floe Foxon

Ammonoid identification is crucial to biostratigraphy, systematic palaeontology, and evolutionary biology, but may prove difficult when shell features and sutures are poorly preserved. This necessitates novel approaches to ammonoid taxonomy. This study aimed to taxonomize ammonoids by their conch geometry using supervised and unsupervised machine learning algorithms. Ammonoid measurement data (conch diameter, whorl height, whorl width, and umbilical width) were taken from the Paleobiology Database (PBDB). 11 species with ≥50 specimens each were identified providing N=781 total unique specimens. Naive Bayes, Decision Tree, Random Forest, Gradient Boosting, K-Nearest Neighbours, and Support Vector Machine classifiers were applied to the PBDB data with a 5x5 nested cross-validation approach to obtain unbiased generalization performance estimates across a grid search of algorithm parameters. All supervised classifiers achieved ≥70% accuracy in identifying ammonoid species, with Naive Bayes demonstrating the least over-fitting. The unsupervised clustering algorithms K-Means, DBSCAN, OPTICS, Mean Shift, and Affinity Propagation achieved Normalized Mutual Information scores of ≥0.6, with the centroid-based methods having most success. This presents a reasonably-accurate proof-of-concept approach to ammonoid classification which may assist identification in cases where more traditional methods are not feasible.


2021 ◽  
Vol 23 (11) ◽  
pp. 749-758
Author(s):  
Saranya N ◽  
◽  
Kavi Priya S ◽  

Breast Cancer is one of the chronic diseases occurred to human beings throughout the world. Early detection of this disease is the most promising way to improve patients’ chances of survival. The strategy employed in this paper is to select the best features from various breast cancer datasets using a genetic algorithm and machine learning algorithm is applied to predict the outcomes. Two machine learning algorithms such as Support Vector Machines and Decision Tree are used along with Genetic Algorithm. The proposed work is experimented on five datasets such as Wisconsin Breast Cancer-Diagnosis Dataset, Wisconsin Breast Cancer-Original Dataset, Wisconsin Breast Cancer-Prognosis Dataset, ISPY1 Clinical trial Dataset, and Breast Cancer Dataset. The results exploit that SVM-GA achieves higher accuracy of 98.16% than DT-GA of 97.44%.


Sign in / Sign up

Export Citation Format

Share Document