Remote Sensing of Arctic Vegetation: Relations between the NDVI, Spatial Resolution and Vegetation Cover on Boothia Peninsula, Nunavut

ARCTIC ◽  
2009 ◽  
Vol 61 (1) ◽  
pp. 1 ◽  
Author(s):  
Gita J. Laidler ◽  
Paul M. Treitz ◽  
David M. Atkinson

Arctic tundra environments are thought to be particularly sensitive to changes in climate, whereby alterations in ecosystem functioning are likely to be expressed through shifts in vegetation phenology, species composition, and net ecosystem productivity (NEP). Remote sensing has shown potential as a tool to quantify and monitor biophysical variables over space and through time. This study explores the relationship between the normalized difference vegetation index (NDVI) and percent-vegetation cover in a tundra environment, where variations in soil moisture, exposed soil, and gravel till have significant influence on spectral response, and hence, on the characterization of vegetation communities. IKONOS multispectral data (4 m spatial resolution) and Landsat 7 ETM+ data (30 m spatial resolution) were collected for a study area in the Lord Lindsay River watershed on Boothia Peninsula, Nunavut. In conjunction with image acquisition, percent cover data were collected for twelve 100 m × 100 m study plots to determine vegetation community composition. Strong correlations were found for NDVI values calculated with surface and satellite sensors, across the sample plots. In addition, results suggest that percent cover is highly correlated with the NDVI, thereby indicating strong potential for modeling percent cover variations over the region. These percent cover variations are closely related to moisture regime, particularly in areas of high moisture (e.g., water-tracks). These results are important given that improved mapping of Arctic vegetation and associated biophysical variables is needed to monitor environmental change.

2013 ◽  
Vol 6 (4) ◽  
pp. 823
Author(s):  
Glauciene Justino Ferreira da Silva ◽  
Nadjacleia Vilar Almeida ◽  
Lidiane Cristina Félix Gomes ◽  
Otávia Karla Apolinário dos Santos

O desmatamento de grandes áreas de vegetação de caatinga para dar lugar às lavouras e servir de pasto aos rebanhos tem contribuído para a degradação ambiental na região Semiárida. Os poucos remanescentes do Bioma Caatinga no Semiárido nordestino sofrem com a pressão exercida pelo avanço agropecuário e pelo descaso de órgãos ambientais de fiscalização. Na microrregião do Cariri paraibano muitos municípios tem perdido a cobertura vegetal em virtude da necessidade de terras para cultivo. Diante do exposto, fica clara a necessidade de estudos sobre a degradação ambiental, para isso o uso das geotecnologias tem proporcionado o monitoramento das alterações provocadas sem manejo adequado dos recursos naturais. O Sensoriamento Remoto e as imagens de sensores orbitais têm sido amplamente empregados em estudos ambientais, possibilitando a extração de informações. Desta forma, este trabalho objetivou avaliar a dinâmica da ocupação do solo e a cobertura vegetal no município de Pararí-PB entre os anos de 1988 e 2005, por meio de técnicas de Sensoriamento Remoto e análise espacial, além de contribuir com o estudo da degradação ambiental no Semiárido. Os resultados obtidos com os mapas de cobertura do solo evidenciaram que a classe solo exposto ocupou as áreas anteriormente pertencentes à classe vegetação densa e rala, expondo o solo do município aos efeitos das chuvas intensas e irregulares. O Índice de Vegetação da Diferença Normalizada (NDVI) melhor representou o estado da cobertura vegetal existente nos anos estudados, e a resposta espectral do solo e vegetação foram influenciados pela precipitação na época em que as imagens foram obtidas. A B S T R A C T The deforestation of large areas of savanna vegetation to make way for crops and serve as pasture to flocks has contributed to environmental degradation in the semiarid region. The few remaining Caatinga Biome in the northeastern Caatinga semiarid suffer from the pressure exerted by agricultural advances and the neglect of environmental enforcement agencies. In micro Cariri many municipalities have lost vegetation cover due to the need for land for cultivation. Given the above, it is clear the need for studies on environmental degradation. In that purpose, the use of geotechnology has provided monitoring changes caused without proper management of natural resources. The Remote Sensing and images from satellite sensors have been widely used in environmental studies, enabling the extraction of information. Thus, this study aimed to evaluate the dynamics of land use and vegetation cover in the municipality of Pararí-PB between the years 1988 and 2005, using remote sensing techniques and spatial analysis, and contributing to the study of environmental degradation in the semiarid. The results obtained with the maps of land cover class showed exposed soil areas previously occupied belonging to the class sparse and dense vegetation, exposing the municipality to the effects of heavy rains. The normalized difference vegetation index (NDVI) best represented the state of vegetation existing in the years studied, and the spectral response of soil and vegetation were influenced by precipitation at the time the pictures were taken. Key-words: Semiarid, vegetation cover, Remote Sensing.


2021 ◽  
Vol 36 (1) ◽  
pp. 111-122
Author(s):  
Felipe de Souza Nogueira Tagliarini ◽  
Mikael Timóteo Rodrigues ◽  
Bruno Timóteo Rodrigues ◽  
Yara Manfrin Garcia ◽  
Sérgio Campos

IMAGENS DE VEÍCULO AÉREO NÃO TRIPULADO APLICADAS NA OBTENÇÃO DO ÍNDICE DE VEGETAÇÃO POR DIFERENÇA NORMALIZADA   FELIPE DE SOUZA NOGUEIRA TAGLIARINI1, MIKAEL TIMÓTEO RODRIGUES2-3, BRUNO TIMÓTEO RODRIGUES1; YARA MANFRIN GARCIA1 E SÉRGIO CAMPOS1   1 Departamento de Engenharia Rural, Faculdade de Ciências Agronômicas (FCA) - Universidade Estadual Paulista (UNESP), Avenida Universitária, nº 3780, Altos do Paraíso, CEP: 18610-034, Botucatu, São Paulo, Brasil. E-mail: [email protected]; [email protected]; [email protected]; [email protected] 2 Centro Universitário Dinâmica das Cataratas (UDC), Rua Castelo Branco, nº 440, Centro, CEP: 85852-010, Foz do Iguaçu, Paraná, Brasil. E-mail: [email protected] 3 Parque Tecnológico Itaipu (PTI), Avenida Tancredo Neves, nº 6731, Jardim Itaipu, Caixa Postal: 2039, CEP: 85867-900, Foz do Iguaçu, Paraná, Brasil. E-mail: [email protected].   RESUMO: O advento dos Veículos Aéreos Não Tripulados (VANT) como ferramenta no sensoriamento remoto possibilitou uma plataforma atuante em diferentes áreas para o mapeamento com elevada precisão e resolução. O objetivo deste estudo consistiu na análise do Índice de Vegetação por Diferença Normalizada (NDVI) para elaboração de mapa temático por meio de aerofotogrametria e fotointerpretação, com maior detalhamento da vegetação devido à altíssima resolução espacial alcançada com o uso de imagens coletadas por VANT em trecho do rio Lavapés, dentro dos limites da Fazenda Experimental Lageado no município de Botucatu-SP. As imagens foram obtidas por meio dos sensores MAPIR Survey3W RGB e Survey3W NIR/InfraRED, embarcados em VANT multirrotor 3DR SOLO. Para construção dos ortomosaicos RGB e NDVI, as imagens foram processadas no software Pix4Dmapper 3.0. O resultado do NDVI proporcionou transição bem nítidas entre os alvos bióticos (vegetação) e os alvos abióticos (corpo d'água, solo e edificações), e também entre a própria vegetação, possibilitando a distinção da vegetação de porte arbóreo, com maior vigor vegetativo, em relação a vegetação de porte herbáceo. As imagens com elevada resolução espacial coletadas por VANT, demonstraram flexibilidade de utilização, possuindo elevado potencial para o mapeamento de dinâmica da paisagem e a resposta espectral da vegetação.   Palavras-chaves: drone, índice radiométrico, sensoriamento remoto   IMAGES OF UNMANNED AERIAL VEHICLE APPLIED TO OBTAIN THE NORMALIZED DIFFERENCE VEGETATION INDEX   ABSTRACT: The advent of Unmanned Aerial Vehicle (UAV) as a tool in remote sensing has enabled a platform acting in different areas for mapping with high precision and resolution. This study aimed to analyze the Normalized Difference Vegetation Index (NDVI) for the elaboration of thematic map through aerophotogrammetry and photointerpretation, with greater detail of vegetation due to high spatial resolution achieved with the use of images collected by UAV in a stretch of Lavapés river, inside the domains of Lageado Experimental Farm in the municipality of Botucatu-SP. The images were obtained through MAPIR Survey3W RGB and Survey3W NIR/InfraRED sensors, aboard a 3DR SOLO multirotor UAV. For constructing RGB and NDVI orthomosaics, the images were processed using Pix4Dmapper 3.0 software. The NDVI result provided a clear transition among biotic targets (vegetation) and abiotic targets (water, soil and buildings), and among the vegetation itself, with greater vegetative vigor, making possible the distinction of arboreal vegetation, in relation to herbaceous vegetation. The images with high spatial resolution collected by UAV demonstrated the flexibility of use, having high potential to mapping landscape dynamics and the spectral response of vegetation.   Keywords: drone, radiometric index, remote sensing.


CERNE ◽  
2017 ◽  
Vol 23 (4) ◽  
pp. 413-422 ◽  
Author(s):  
Eduarda Martiniano de Oliveira Silveira ◽  
José Márcio de Mello ◽  
Fausto Weimar Acerbi Júnior ◽  
Aliny Aparecida dos Reis ◽  
Kieran Daniel Withey ◽  
...  

ABSTRACT Assuming a relationship between landscape heterogeneity and measures of spatial dependence by using remotely sensed data, the aim of this work was to evaluate the potential of semivariogram parameters, derived from satellite images with different spatial resolutions, to characterize landscape spatial heterogeneity of forested and human modified areas. The NDVI (Normalized Difference Vegetation Index) was generated in an area of Brazilian amazon tropical forest (1,000 km²). We selected samples (1 x 1 km) from forested and human modified areas distributed throughout the study area, to generate the semivariogram and extract the sill (σ²-overall spatial variability of the surface property) and range (φ-the length scale of the spatial structures of objects) parameters. The analysis revealed that image spatial resolution influenced the sill and range parameters. The average sill and range values increase from forested to human modified areas and the greatest between-class variation was found for LANDSAT 8 imagery, indicating that this image spatial resolution is the most appropriate for deriving sill and range parameters with the intention of describing landscape spatial heterogeneity. By combining remote sensing and geostatistical techniques, we have shown that the sill and range parameters of semivariograms derived from NDVI images are a simple indicator of landscape heterogeneity and can be used to provide landscape heterogeneity maps to enable researchers to design appropriate sampling regimes. In the future, more applications combining remote sensing and geostatistical features should be further investigated and developed, such as change detection and image classification using object-based image analysis (OBIA) approaches.


2011 ◽  
Vol 3 (3) ◽  
pp. 157
Author(s):  
Daniel Rodrigues Lira ◽  
Maria do Socorro Bezerra de Araújo ◽  
Everardo Valadares De Sá Barretto Sampaio ◽  
Hewerton Alves da Silva

O mapeamento e monitoramento da cobertura vegetal receberam consideráveis impulsos nas últimas décadas, com o advento do sensoriamento remoto, processamento digital de imagens e políticas de combate ao desmatamento, além dos avanços nas pesquisas e gerações de novos sensores orbitais e sua distribuição de forma mais acessível aos usuários, tornam as imagens de satélite um dos produtos do sensoriamento remoto mais utilizado para análises da cobertura vegetal das terras. Os índices de cobertura vegetal deste trabalho foram obtidos usando o NDVI - Normalized Difference Vegetation Index para o Agreste central de Pernambuco indicou 39,7% de vegetação densa, 13,6% de vegetação esparsa, 14,3% de vegetação rala e 10,5% de solo exposto. O NDVI apresentou uma caracterização satisfatória para a classificação do estado da vegetação do ano de 2007 para o Agreste Central pernambucano, porém ocorreu uma confusão com os índices de nuvens, sombras e solos exposto, necessitando de uma adaptação na técnica para um melhor aprimoramento da diferenciação desses elementos, constituindo numa recombinação de bandas após a elaboração e calculo do NDVI.Palavras-chave: Geoprocessamento; sensoriamento remoto; índice de vegetação. Mapping and Quantification of Vegetation Cover from Central Agreste Region of Pernambuco State Using NDVI Technique ABSTRACTIn recent decades, advanced techniques for mapping and monitoring vegetation cover have been developed with the advent of remote sensing. New tools for digital processing, the generation of new sensors and their orbital distribution more accessible have facilitated the acquisition and use of satellite images, making them one of the products of remote sensing more used for analysis of the vegetation cover. The aim of this study was to assess the vegetation cover from Central Agreste region of Pernambuco State, using satellite images TM / LANDSAT-5. The images were processed using the NDVI (Normalized Difference Vegetation Index) technique, generating indexes used for classification of vegetation in dense, sparse and scattered. There was a proportion of 39.7% of dense vegetation, 13.6% of sparse vegetation, 14.3% of scattered vegetation and 10.5% of exposed soil. NDVI technique has been used as a useful tool in the classification of vegetation on a regional scale, however, needs improvement to a more precise differentiation among levels of clouds, shadow, exposed soils and vegetation. Keywords: Geoprocessing, remote sensing, vegetation index


2021 ◽  
Vol 52 (3) ◽  
pp. 620-625
Author(s):  
Y. K. Al-Timimi

Desertification is one of the phenomena that threatening the environmental, economic, and social systems. This study aims to evaluate and monitor desertification in the central parts of Iraq between the Tigris and Euphrates rivers through the use of remote sensing techniques and geographic information systems. The Normalized difference vegetation index NDVI and the crust index CI were used, which were applied to two of the Landsat ETM + and OLI satellite imagery during the years 1990 and 2019. The research results showed that the total area of ​​the vegetation cover was 2620 km2 in 1990, while there was a marked decrease in the area Vegetation cover 764 km2 in 2019, accounting for 34.8% (medium desertification) and 10.2% (high desertification), respectively. Also, the results showed that sand dunes occupied an area of ​​767 km2 in 1990, while the area of ​​sand dunes increased to 1723 km2 in 2019, with a rate of 10.2%) medium desertification (and 22.9% (severe desertification), respectively. It was noted that the overall rate of decrease in vegetation cover was 21.33 km2year-1 while the overall rate of increase in ground erosion in the area is 10.99 km2year-1.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1909
Author(s):  
Enrico Borgogno-Mondino ◽  
Laura de Palma ◽  
Vittorino Novello

The protection of vineyards with overhead plastic covers is a technique largely applied in table grape growing. As with other crops, remote sensing of vegetation spectral reflectance is a useful tool for improving management even for table grape viticulture. The remote sensing of the spectral signals emitted by vegetation of covered vineyards is currently an open field of investigation, given the intrinsic nature of plastic sheets that can have a strong impact on the reflection from the underlying vegetation. Baring these premises in mind, the aim of the present work was to run preliminary tests on table grape vineyards covered with polyethylene sheets, using Copernicus Sentinel 2 (Level 2A product) free optical data, and compare their spectral response with that of similar uncovered vineyards to assess if a reliable spectral signal is detectable through the plastic cover. Vine phenology, air temperature and shoot growth, were monitored during the 2016 growing cycle. Twenty-four Copernicus Sentinel 2 (S2, Level 2A product) images were used to investigate if, in spite of plastic sheets, vine phenology can be similarly described with and without plastic covers. For this purpose, time series of S2 at-the-ground reflectance calibrated bands and correspondent normalized difference vegetation index (NDVI), modified soil-adjusted vegetation index, version two (MSAVI2) and normalized difference water index (NDWI) spectral indices were obtained and analyzed, comparing the responses of two covered vineyards with different plastic sheets in respect of two uncovered ones. Results demonstrated that no significant limitation (for both bands and spectral indices) was introduced by plastic sheets while monitoring spectral behavior of covered vineyards.


Author(s):  
Mfoniso Asuquo Enoh ◽  
Uzoma Chinenye Okeke ◽  
Needam Yiinu Barinua

Remote Sensing is an excellent tool in monitoring, mapping and interpreting areas, associated with hydrocarbon micro-seepage. An important technique in remote sensing known as the Soil Adjusted Vegetation Index (SAVI), adopted in many studies is often used to minimize the effect of brightness reflectance in the Normalized Difference Vegetation Index (NDVI), related with soil in areas of spare vegetation cover, and mostly in areas of arid and semi–arid regions. The study aim at analyzing the effect of hydrocarbon micro – seepage on soil and sediments in Ugwueme, Southern Eastern Nigeria, with SAVI image classification method. To achieve this aim, three cloud free Landsat images, of Landsat 7 TM 1996 and ETM+ 2006 and Landsat 8 OLI 2016 were utilized to produce different SAVI image classification maps for the study.  The SAVI image classification analysis for the study showed three classes viz Low class cover, Moderate class cover and high class cover.  The category of high SAVI density classification was observed to increase progressive from 31.95% in 1996 to 34.92% in 2006 and then to 36.77% in 2016. Moderately SAVI density classification reduced from 40.53% in 1996 to 38.77% in 2006 and then to 36.96% in 2016 while Low SAVI density classification decrease progressive from 27.51% in 1996 to 26.31% in 2006 and then increased to 28.26% in 2016. The SAVI model is categorized into three classes viz increase, decrease and unchanged. The un – changed category increased from 12.32km2 (15.06%) in 1996 to 17.17 km2 (20.96%) in 2006 and then decelerate to 13.50 km2 (16.51%) in 2016.  The decrease category changed from 39.89km2 (48.78%) in 1996 to 40.45 km2 (49.45%) in 2006 and to 51.52 km2 (63.0%) in 2016 while the increase category changed from 29.57km2 (36.16%) in 1996 to 24.18 km2 (29.58%) in 2006 and to 16.75 km2 (20.49%) in 2016. Image differencing, cross tabulation and overlay operations were some of the techniques performed in the study, to ascertain the effect of hydrocarbon micro - seepage.  The Markov chain analysis was adopted to model and predict the effect of the hydrocarbon micro - seepage for the study for 2030.  The study expound that the SAVI is an effective technique in remote sensing to identify, map and model the effect of hydrocarbon micro - seepage on soil and sediment particularly in areas characterized with low vegetation cover and bare soil cover.


2021 ◽  
Author(s):  
Cecilia Rodriguez-Gomez ◽  
Gabor Kereszturi ◽  
Robert Reeves ◽  
Andrew Rae ◽  
Reddy Pullanagari ◽  
...  

<p>Remote sensing techniques are used to explore geothermal areas. They can offer spatial, temporal and spectral information to map lithological boundaries and hydrothermal alteration in a fast and cheap manner. However, some geothermal areas are densely covered by vegetation, which can hamper remote sensing monitor efforts for geothermal areas.</p><p>Vegetation cover in geothermal areas can reflect the subsurface activity, reacting to interactions between soil’s chemical conditions, heat and gas emissions. An example of such is kanuka (i.e. kunzea ericoides), an endemic shrub of geothermal areas in the Taupo Volcanic Zone (TVZ), New Zealand, which has been used as an indicator species for ground-based geothermal studies. This study assesses the use of airborne hyperspectral and thermal data over the Waiotapu Geothermal Field, TVZ, New Zealand, analysing kanuka shrub surface cover and its spectral response to geothermal activity. To explore the capability in hyperspectral remote sensing for geothermal site mapping and exploration, a series of vegetation indices, including; Anthocyanin Reflectance Index, Atmospherically Resistant Vegetation Index, Moisture Stress Index, Normalised Difference Vegetation Index, Simple Ratio Index, Vogelmann Index and Water Band Index were calculated from narrow bandwidth high-resolution hyperspectral.</p><p>The spectral response of vegetation was then analysed to explore the effects of geothermal heat, offering surrogate information on vegetation health. Vegetation indices results were compared against the thermal infrared data by visual interpretation and quantitative analyses, which shows strong spatial correlation among the vegetation cover type and heat distribution. Furthermore, exponential trendlines produced the best fit between vegetation indices and thermal infrared data. This correlation indicates soil temperatures affect the vegetation health (e.g. chlorophyll concentrations, newly forming leaves, water content). This relationship can highlight that there is valuable information in airborne hyperspectral data to complement exploration efforts, such as heat flux mapping. We conclude kanuka shrub has the potential to be employed as a proxy in exploration and monitoring of geothermal areas in New Zealand from remote sensing platforms.</p>


1991 ◽  
Vol 27 (4) ◽  
pp. 423-429 ◽  
Author(s):  
R. K. Mahey ◽  
Rajwant Singh ◽  
S. S. Sidhu ◽  
R. S. Narang

SUMMARYGround-based radiometric measurements in the red and infrared bands were used to monitor the growth and development of wheat under irrigated and stressed conditions throughout the 1987–88 and 1988–89 growth cycles. Spectral data were correlated with plant height, leaf area index, total fresh and total dry biomass, plant water content and grain yield. The radiance ratio (R) and normalized difference vegetation index (NDVI) were highly and linearly correlated with yield, establishing the potential which remote sensing has for predicting grain yield. The correlation for R and NDVI was at a maximum between 75 and 104 days after sowing, corresponding with maximum green crop canopy cover. The differences in spectral response over time between irrigated and unirrigated crops allowed detection of water stress effects on the crop, indicating that a hand-held radiometer can be used to collect spectral data which can supply information on wheat growth and development.Efectos de lafalta de agua en el trigo


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3787 ◽  
Author(s):  
Bing Yu ◽  
Songhao Shang

Crop yield estimation is important for formulating informed regional and national food trade policies. The introduction of remote sensing in agricultural monitoring makes accurate estimation of regional crop yields possible. However, remote sensing images and crop distribution maps with coarse spatial resolution usually cause inaccuracy in yield estimation due to the existence of mixed pixels. This study aimed to estimate the annual yields of maize and sunflower in Hetao Irrigation District in North China using 30 m spatial resolution HJ-1A/1B CCD images and high accuracy multi-year crop distribution maps. The Normalized Difference Vegetation Index (NDVI) time series obtained from HJ-1A/1B CCD images was fitted with an asymmetric logistic curve to calculate daily NDVI and phenological characteristics. Eight random forest (RF) models using different predictors were developed for maize and sunflower yield estimation, respectively, where predictors of each model were a combination of NDVI series and/or phenological characteristics. We calibrated all RF models with measured crop yields at sampling points in two years (2014 and 2015), and validated the RF models with statistical yields of four counties in six years. Results showed that the optimal model for maize yield estimation was the model using NDVI series from the 120th to the 210th day in a year with 10 days’ interval as predictors, while that for sunflower was the model using the combination of three NDVI characteristics, three phenological characteristics, and two curve parameters as predictors. The selected RF models could estimate multi-year regional crop yields accurately, with the average values of root-mean-square error and the relative error of 0.75 t/ha and 6.1% for maize, and 0.40 t/ha and 10.1% for sunflower, respectively. Moreover, the yields of maize and sunflower can be estimated fairly well with NDVI series 50 days before crop harvest, which implicated the possibility of crop yield forecast before harvest.


Sign in / Sign up

Export Citation Format

Share Document