Implementation of Multiagent Learning Algorithms for Improved Decision Making

Author(s):  
Deepak A. Vidhate ◽  
Parag Kulkarni
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Alan Brnabic ◽  
Lisa M. Hess

Abstract Background Machine learning is a broad term encompassing a number of methods that allow the investigator to learn from the data. These methods may permit large real-world databases to be more rapidly translated to applications to inform patient-provider decision making. Methods This systematic literature review was conducted to identify published observational research of employed machine learning to inform decision making at the patient-provider level. The search strategy was implemented and studies meeting eligibility criteria were evaluated by two independent reviewers. Relevant data related to study design, statistical methods and strengths and limitations were identified; study quality was assessed using a modified version of the Luo checklist. Results A total of 34 publications from January 2014 to September 2020 were identified and evaluated for this review. There were diverse methods, statistical packages and approaches used across identified studies. The most common methods included decision tree and random forest approaches. Most studies applied internal validation but only two conducted external validation. Most studies utilized one algorithm, and only eight studies applied multiple machine learning algorithms to the data. Seven items on the Luo checklist failed to be met by more than 50% of published studies. Conclusions A wide variety of approaches, algorithms, statistical software, and validation strategies were employed in the application of machine learning methods to inform patient-provider decision making. There is a need to ensure that multiple machine learning approaches are used, the model selection strategy is clearly defined, and both internal and external validation are necessary to be sure that decisions for patient care are being made with the highest quality evidence. Future work should routinely employ ensemble methods incorporating multiple machine learning algorithms.


2021 ◽  
Author(s):  
Yew Kee Wong

Deep learning is a type of machine learning that trains a computer to perform human-like tasks, such as recognizing speech, identifying images or making predictions. Instead of organizing data to run through predefined equations, deep learning sets up basic parameters about the data and trains the computer to learn on its own by recognizing patterns using many layers of processing. This paper aims to illustrate some of the different deep learning algorithms and methods which can be applied to artificial intelligence analysis, as well as the opportunities provided by the application in various decision making domains.


Author(s):  
Pragya Paudyal ◽  
B.L. William Wong

In this paper we introduce the problem of algorithmic opacity and the challenges it presents to ethical decision-making in criminal intelligence analysis. Machine learning algorithms have played important roles in the decision-making process over the past decades. Intelligence analysts are increasingly being presented with smart black box automation that use machine learning algorithms to find patterns or interesting and unusual occurrences in big data sets. Algorithmic opacity is the lack visibility of computational processes such that humans are not able to inspect its inner workings to ascertain for themselves how the results and conclusions were computed. This is a problem that leads to several ethical issues. In the VALCRI project, we developed an abstraction hierarchy and abstraction decomposition space to identify important functional relationships and system invariants in relation to ethical goals. Such explanatory relationships can be valuable for making algorithmic process transparent during the criminal intelligence analysis process.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-18 ◽  
Author(s):  
Mei Yang ◽  
Shah Nazir ◽  
Qingshan Xu ◽  
Shaukat Ali

The data are ever increasing with the increase in population, communication of different devices in networks, Internet of Things, sensors, actuators, and so on. This increase goes into different shapes such as volume, velocity, variety, veracity, and value extracting meaningful information and insights, all are challenging tasks and burning issues. Decision-making based on multicriteria is one of the most critical issues solving ways to select the most suitable decision among a number of alternatives. Deep learning algorithms and multicriteria-based decision-making have effective applications in big data. Derivations are made based on the use of deep algorithms and multicriteria. Due to its effectiveness and potentiality, it is exploited in several domains such as computer science and information technology, agriculture, and business sector. The aim of the proposed study is to present a systematic literature study in order to show the applications of deep learning algorithms and multicriteria decision approaches for the problems of big data. The research finds novel means to make the decision support system for the problems of big data using multiple criteria in integration with machine learning and artificial intelligence approaches.


2020 ◽  
Vol 110 ◽  
pp. 91-95 ◽  
Author(s):  
Ashesh Rambachan ◽  
Jon Kleinberg ◽  
Jens Ludwig ◽  
Sendhil Mullainathan

There are widespread concerns that the growing use of machine learning algorithms in important decisions may reproduce and reinforce existing discrimination against legally protected groups. Most of the attention to date on issues of “algorithmic bias” or “algorithmic fairness” has come from computer scientists and machine learning researchers. We argue that concerns about algorithmic fairness are at least as much about questions of how discrimination manifests itself in data, decision-making under uncertainty, and optimal regulation. To fully answer these questions, an economic framework is necessary--and as a result, economists have much to contribute.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Shisen Li ◽  
Shenglu Huo ◽  
Wei Ke

In the field of martial arts, athletes can win the initiative in the competition if they can correctly and timely acquire the field knowledge, evaluate the situation efficiently, and formulate a suitable strategy. In this paper, we use fuzzy mathematics, mathematical statistics, and artificial intelligence learning algorithms to carry out systematic and in-depth research on the selection of Wushu competition scene decision-making. The fuzzy mathematics theory is combined with the intelligent design theory for decision-making based on a multiagent, case-based reasoning selection, and adaptability evaluation analysis. The Wushu competition scene decision system is constructed based on artificial intelligence learning algorithms. Our approach outperforms the existing approaches in terms of accuracy, sensitivity, specificity, and Matthew’s correlation coefficient (MCC). The results of our proposed model can be anticipated to have the potential for better flexibility and scalability in martial arts competition.


Sign in / Sign up

Export Citation Format

Share Document