scholarly journals Unconfined compressive strength and California Bearing Ratio test on clay stabilization using silica sand

2021 ◽  
Vol 1122 (1) ◽  
pp. 012017
Author(s):  
Ika Puji Hastuty ◽  
Agung Hartawan
2013 ◽  
Vol 438-439 ◽  
pp. 197-201
Author(s):  
Xian Hua Yao ◽  
Peng Li ◽  
Jun Feng Guan

Based on the generalization and analysis of laboratory experimental results on mix ratio, the effects of various factors such as cement content, water-cement ratio, curing time, curing conditions and types of cement on the mechanical properties of unconfined compressive strength of cement soil are presented. Results show that the unconfined compressive strength of cement soil increases with the growing curing time, and it is greatly affected by the cement content, water-cement ratio, cement types and curing time, while the effect of curing conditions is weak with a cement content of more than 10%. Moreover, the stress-strain of the cement soil responds with the cement content and curing time, increasing curing time and cement content makes the cement soil to be harder and brittle, and leads to a larger Young's modulus.


2019 ◽  
Vol 8 (2) ◽  
pp. 6252-6257

Clayey soils are considered as the weakest subgrade soil from civil engineering point of view under moist condition. These soils attract and absorb water and loses their strength. Because of this reason certain inherent properties of these clayey soils need modification for their bulk use in construction of highways, embankments etc. Recently, many synthetic fibres have emerged to strengthen soft soils. Synthetic fibres are low-cost materials, hydrophobic and chemically inert in nature which does not allow the absorption or reaction with soil moisture. The inclusion of synthetic fibres provides reinforcement to the soil and use of lime as a soil stabilizer in BC soil cut down the plasticity index and also increase its strength. For this an extensive laboratory test program was conducted to analyse the variation geotechnical properties of soil by changing the percentage of recron fibre at an optimum dose of lime. The laboratory tests include Atterberg Limit Test, Modified Proctor Test, Unconfined Compressive Strength Test and California Bearing Ratio Test. To conduct different tests on soil sample the proportion of lime is kept fixed and proportion of polyester recron fibre is varied from 0% to 1% by dry weight of soil sample for different lengths of fibre(6 mm, 12 mm & 18 mm separately). Optimum dose of lime is find out by plasticity index of BC soil mixed with varying percentages of lime (4%, 6%, 8% and 10%). Results of the experiments shows that with the increase in the appropriate percentage in recron fibre the Unconfined Compressive Strength and California Bearing Ratio increases. On increasing the length of Recron Fibre, the Unconfined Compressive Strength and California Bearing Ratio also increases. Combination of lime and recron fibre in BC soil give higher CBR value. Therefore it can be used in the improvement of Clayey Soil Subgrade in pavement design and in the construction of embankements.


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Anigilaje B Salahudeen ◽  
Ja’afar A Sadeeq

The study investigate the suitability of subgrade soil in Baure Local Government Area of Kastina State Nigeria for road construction. The strength properties of the  subgrade was improved using lime and cement. Several analysis including the particle size distribution, specific gravity, Atterberg limits, compaction characteristics, unconfined compressive strength and California bearing ratio tests were performed on natural and lime/cement treated soil samples in accordance with BS 1377 (1990) and BS 1924 (1990) respectively. Soil specimens were prepared by mixing the soil with lime and cement in steps of 0, 3, 6, and 9% by weight of dry soil in several percentage combinations. The Atterberg limits of the weak subgrade soils improved having a minimum plasticity index value of 5.70 % at 3%Lime/6%Cement contents. The maximum dry density (MDD) values obtained showed a significant improvement having a peak value of 1.66 kN/m3 at 9%Lime/9%Cement contents. Similarly, a minimum value of 18.50 % was observed for optimum moisture content at 9%Lime/9%Cement contents which is a desirable reduction from a value of 25.00 % for the natural soil. The unconfined compressive test value increased from 167.30 kN/m2 for the natural soil to 446.77 kN/m2 at 9%Lime/9%Cement contents 28 days curing period. Likewise, the soaked California bearing ratio values increased from 2.90 % for the natural soil to 83.90 % at 9%Lime/9%Cement contents. Generally, there were improvements in the engineering properties of the weak subgrade soil when treated with lime and cement. However, the peak UCS value of 446.77 kN/m2 fails to meet the recommended UCS value of 1710 KN/m2 specified by TRRL (1977) as a criterion for adequate stabilization using Ordinary Portland Cement.            Keywords: Weak subgrade soil, Lime, Cement, Atterberg limits, Maximum dry density, Optimum moisture content, Unconfined compressive strength, California bearing ratio


2020 ◽  
Vol 26 (7) ◽  
pp. 145-157
Author(s):  
Zozk Kawa Abdalqadir ◽  
Nihad Bahaaldeen Salih ◽  
Soran Jabbar Hama Salih

The clayey soils have the capability to swell and shrink with the variation in moisture content. Soil stabilization is a well-known technique, which is implemented to improve the geotechnical properties of soils. The massive quantities of waste materials are resulting from modern industry methods create disposal hazards in addition to environmental problems. The steel industry has a waste that can be used with low strength and weak engineering properties soils. This study is carried out to evaluate the effect of steel slag (SS) as a by-product of the geotechnical properties of clayey soil. A series of laboratory tests were conducted on natural and stabilized soils. SS was added by 0, 2.5, 5, 10, 15, and 20% to the soil. The conducted tests are consistency limits, specific gravity, hydrometer analysis, modified Proctor compaction, swelling pressure, swelling percent, unconfined compressive strength, and California Bearing Ratio (Soaked CBR). The results showed that the values of liquid limit, plasticity index, optimum moisture content, swelling pressure, and swelling percent were decreased when stabilized the soil. However, the values of maximum dry density, unconfined compressive strength, and California bearing ratio were increased with the addition of steel slag with various percentages to the clayey soil samples. The steel slag was found to be successfully improving the geotechnical properties of clayey soils.


2020 ◽  
Vol 15 (3) ◽  
pp. 79-90
Author(s):  
Abbas Al-Hdabi ◽  
Mohammed K. Fakhraldin ◽  
Rasha A. Al-Fatlawy ◽  
Tawfek Sheer Ali

Ignition of waste paper sludge at elevated temperatures to produce electricity in power generation plants utilizing fluidized bed combustion generates paper sludge ash. Due to the high concentration of lime and gelignite in paper sludge ash, it is expected that it will play a vital role as a cementitious material. This paper investigates the use of paper sludge ash to improve the mechanical properties of the granular materials, which are suitable to subbase course for road and building constructions. Also, a comparison study with the use of Portland cement as an additive to granular materials has been covered. The mechanical properties were evaluated by conducting the California bearing ratio test for the two adopted methods. Moreover, the compressive strength of the samples using paper sludge ash and cement are investigated. In accordance to the California bearing ratio test, 4% paper sludge ash was indicated as the optimum ash content at which the California bearing ratio value increased by 173% and 111% in comparison with untreated material and 6% cement, respectively. On the other hand, and by means of the compressive strength, the granular materials with 4% paper sludge ash has compressive strength higher than those with 6% cement.


2015 ◽  
Vol 76 (1) ◽  
Author(s):  
Ali Akbar Firoozi ◽  
Mohd Raihan Taha ◽  
Ali Asghar Firoozi ◽  
Tanveer Ahmed Khan

There are several questions that are not well understood with respect to the long-term stability characteristics of lime-treated clay soils in spite of being used as a conventional technique to improve the properties of clay soils. This paper investigates the influence of freeze-thaw cycles on the unconfined compressive strength of kaolinite and illite mixed with silica sand. The results of this study show that an increase in the number of freeze-thaw cycles decreases the unconfined compressive strength. The role of lime increasing the soil strength is more significant in the case of samples exposed to freeze-thaw cycles compared to those not exposed to freeze-thaw cycles. The effect of freeze-thaw cycles on the dry unit weight and moisture content is insignificant compared to unexposed samples. The maximum volumetric changes occurred in the first freeze-thaw cycle, and afterward, the rate of volume change decreased with an increase in freeze—thaw cycles.


2017 ◽  
Vol 5 (2) ◽  
pp. 117-122
Author(s):  
Evi Meilisa Adhanty ◽  
Rida Respati ◽  
Norseta Ajie Saputra

Land is the foundation for construction. Foundation is the lowest part of a construction, serves to channel the load directly from the construction structure to the soil layer at underneath it. Soils that have bad properties are very unfavorable if used for something construction, especially for highway pavement. The way to increase the carrying capacity of clay soil is to do soil stabilization efforts, that is, using roadbooster as a stabilizing chemical and is expected to improve the nature of the clay and meets the requirements for road pavement materials. In this study will stabilization of the clay soil of Tumbang Rungan Village Palangka Raya with the main parameters which is used as a research reference, namely California Bearing Ratio (CBR) immersion and Unconfined Compressive Strength (UCS). Based on the results of testing the clay soil of Tumbang Rungan Village, Palangka Raya, the data were obtained: Original ground immersion CBR 7.89%, CBR immersion 0% roadbooster 76%, CBR 4% immersion roadbooster 40.85%, CBR immersion 8% roadbooster 27.08%, UCS original soil 0.56 kg / cm2, UCS 0% roadbooster 7.30 kg / cm2, UCS 4% roadbooster 7.40 kg / cm2, and UCS 8% roadbooster 8.30 kg / cm2. From the CBR data, you can see the value The highest CBR is when mixing 0% roadbooster or without additional roadbooster, while the highest UCS value lies in mixing 8% roadbooster.


Sign in / Sign up

Export Citation Format

Share Document