USING CERAMIC WASTES IN CONCRETE MANUFACTURING FOR SUSTAINABLE CONSTRUCTION MATERIALS AS COARSE AGGREGATE REPLACEMENT

Author(s):  
Mohamed Tarek El-Hawary ◽  
Amr Maher Elnemr ◽  
Nagy Fouad Hanna

About 30% of the ceramic production all over the world considered as waste. This huge amount of ceramic waste can be recycled in the construction industry, especially in concrete mix design, which is the main scope of this research. Ceramic wastes could provide many advantages rather than sustainability. It is considered economical and can replace cement, coarse aggregate, and fine aggregate, such as sand. In this study, several concrete mixtures were designed according to the ACI standards to assess the ceramic waste concrete for fresh and hardened properties in terms of slump, concrete compressive, splitting tensile and flexural strengths. Six mixes included with 0%, 10%, 20%, 30%, 40% and 50% replacement of coarse aggregate by crushed ceramic waste. By comparing the results between ceramic waste concrete and conventional concrete specimens, the optimum mix design was found to be at 30%-coarse aggregate replacement. Scanning electron microscope tests performed on the concrete specimens to examine the bond between the particles, the porosity, and the elementary composition of the specimens. The percentage of savings in cost estimated when using the optimum mix design (30% coarse aggregate replacement) was about a 30% reduction in the construction cost per the Egyptian market.

Author(s):  
Paul Awoyera ◽  
Joseph Akinmusuru ◽  
Anthony Ede ◽  
Joshua Jolayemi

The persistent reliance on traditional construction materials is of no gain to the future generation. The rate at which the natural aggregate sources are explored is alarming, and as a result, the threat of depletion of the natural materials has inspired interest in sustainable construction materials, focusing on construction and demolition wastes and local materials. In this study, an experimental insight on modified concrete, based on workability, strength and microstructural properties, is provided, in an attempt to ascertain the suitability of silica-rich aggregates (ceramic industry wastes and laterite) as a replacement for conventional fine and coarse aggregates. Various mix proportions were considered, and material batching was done by weight for concrete casting. The workability test, using slump, indicates that the flowability of the modified concrete mixes is achievable at a water-binder ratio of 0.6. The strength properties of the concrete increased with the increasing ceramic substitution for granite while increasing laterite content beyond 10% negates the strength gain by the concrete. A concrete mix containing 90% ceramic fine and 10% laterite, as fine aggregate, and 100% of cement and ceramic coarse, as binder and coarse aggregate, respectively, gave higher compressive strength (22.5 MPa), and split-tensile strength (3.6 MPa), and these results were found as comparable to the conventional concrete.


2013 ◽  
Vol 421 ◽  
pp. 390-394 ◽  
Author(s):  
Abdullah Mohd Mustafa Al Bakri ◽  
M.N. Norazian ◽  
M. Mohamed ◽  
H. Kamarudin ◽  
C.M. Ruzaidi ◽  
...  

This research focuses on a study of the strength of concrete with ceramic waste as coarse aggregate and quarry dust as fine aggregate. The sources of ceramic waste and quarry dust are obtained from the industrial in Malaysia. Presently, in ceramics industries the production goes as waste, which is not under going the recycle process yet. In this study an attempt has been made to find the suitability of the ceramic industrial wastes and quarry dust as a possible replacement for conventional crushed stone coarse and fine aggregate. Experiment were carried out to determine the strength of concrete with ceramic waste coarse aggregate and quarry dust fine aggregate to compare them with the conventional concrete made (with crushed stone coarse aggregate). From the results show that compressive strength of concrete with quarry dust as aggregates is the highest with 30.82 MPa with density 2251.85 kg/m3. This show, ceramic waste and quarry dust can be alternative aggregate for comparable properties.


2019 ◽  
Vol 8 (4) ◽  
pp. 5817-5820

Paper Construction industry has been conducted various studies on the utilization of waste materials in concrete productions in order to decrease the usage of natural resources. This research paper exhibits the evaluation and the effective reuse of waste construction materials and industries, such as cuddapah waste aggregate as partial replacement of conventional coarse aggregate and copper slag as partial replacement of river sand (fine aggregate). Experiments were conducted to find out the mechanical properties of concrete such as compressive, splitting tensile, flexural strengths and the modulus of elasticity of concrete for waste materials aggregate concrete and to compare them with those of conventional aggregate concrete. Results appear that waste materials in concrete have the potential to produce good quality concrete mixtures.


2021 ◽  
Vol 889 (1) ◽  
pp. 012067
Author(s):  
Khundrakpam Binod Singh ◽  
Avani Chopra

Abstract Quarry dust is considered as a possible source of natural sand or fine aggregate in concrete construction work. This could reduce the problem of dumping of quarry dust as a byproduct from stone crusher factory. The experimental work investigates the optimum quarry dust percentage which can be adopted as replacement of fine aggregate in concrete mainly for rigid pavement. The quarry dust is added at different percentages of 0%, 20%, 40%, 60%, 80%, and 100% replacement of fine aggregate for M35 grade concrete thereby to find out the optimum content of quarry dust that can give better strength in concrete. Mix design has been developed for M35 grade of concrete as per IRC 044 – 2017(Mix Design for Concrete Pavement) and mix design ratio is found as 1: 1.6: 2.62 by using Sulfonated naphthalene formaldehyde (SNF) as an admixture at 1%, and 2%. The required water cement ratio was obtained as 0.39 according to table no.9 of IRC 044 for the target strength of 42.5 N/mm2. Optimum strength and workability test values of concrete made up for various proportions of quarry dust along with SNF are compared with conventional concrete of natural fine aggregate after 7 days and 28 days curing. It is found that the strength increased with the increase in curing time and the maximum strength at 28 days curing and 60% quarry dust replacement with 2% addition of SNF. The maximum strength of quarry replaced concrete is obtained as 40.3MPa, 5.6MPa, and 5.1MPa for compressive, flexural, and split tensile respectively.


2021 ◽  
Vol 2 (2) ◽  
pp. 239-254
Author(s):  
Johan Oberlyn Simanjuntak ◽  
Ros Anita Sidabutar ◽  
Humisar Pasaribu ◽  
Yetty Riris R Saragi ◽  
Sriyanti Sitorus

Concrete is a construction material consisting of a mixture of cement, aggregate, water and with or without admixture if needed. Coarse aggregate and fine aggregate serve as the main filler of concrete as well as reinforcement, while the cement and water mixtured serves as a binder between materials. To find out and study the behavior of each of these concrete constituents, it is necessary to know the characteristics of the materials made as constituents of the concrete. This study was conducted with the aim of comparing the most optimum type of coarse aggregate used and the comparison of the use of cement for coarse aggregate of crushed stone and coarse aggregate of gully originating from North Sumatera area, namely from the Wampu River in Binjai City as a concrete mixture to see its effect on compressive strength of concrete at the same concrete characteristics namely f’c 25 MPa. The results of the normal concrete mix design are obtained by using coarse aggregate of crushed stone and coarse aggregate of boulder in different amounts of cement. The coarse aggregate of crushed stone requires more cement with the amount of cement 411.1 kg/m3 than the coarse aggregate of gum with the amount of cement 388.9 kg/cm3.


Author(s):  
Nandy Candra ◽  
Whendy Trissan

Plastic bottle is waste that can be utilized. This research is used as additive in concrete mixtures can provide an alternative to Utilize the waste. Such as waste plastic bottles PET (Polyethylene Terephthalate). Optimizing the utilization of waste plastic bottles PET (Polyethylene Terephthalate) is expected to reduce the waste that pollutes the environment and provide added value.The fiber to be used as an additive in concrete mixtures. The fibers are mixed with fine aggregate, water and PPC cement type I gresik brands. Concrete mix design using SNI 03-2843-2000 about how making plans mixture of normal concrete. Tests using a cylinder measuring 10 cm x 20 cm, each variation using 10 samples consisting of five variations (0%, 5%, 10%, 15%, 20%) and tested at 14 and 28 days in Laboratory Studies Engineering Education building the Faculty of Education University of Palangkaraya.Average compressive strength at 14 days for variations of coarse aggregate mixture of chopped plastic bottle 0%, 5%, 10%, 15% and 20%, respectively for 23:02 MPa; 12:35 MPa; 10.49 MPa; 9.6 MPa; 8.83 MPa. Average compressive strength at 28 days for variations of coarse aggregate mixture of chopped plastic bottle 0%, 5%, 10%, 15% and 20%, respectively for 25.77 MPa; 13.62 MPa; 11.84 MPa; 10.8 MPa; 10:28 MPa


2021 ◽  
Vol 3 (3) ◽  
pp. 459-468
Author(s):  
Yanti ◽  
Rais Rachman ◽  
Alpius

The research objective focuses on testing the characteristics of the Laston Lapis Aus mixture, the aggregate taken later to be studied is the aggregate of Concrete Waste. The method used in this study included testing the properties of coarse aggregate, fine aggregate and filler, after that the Laston Lapis Aus mixture design was carried out after that the marshall test was carried out while the marshalltest was carried out namely the conventional marshall to get the characteristic value. The results showed that the characteristics of the pavement material in the form of aggregates from Concrete Waste tested the 2018 Bina Marga General Specifications as road layers. Through Marshall testing, the characteristics of the Laston Lapis Aus mixture were abtained with asphalt levels of 5,50%, 6,00%, 6,50%, 7,00%, and 7,50%.


Teras Jurnal ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 53
Author(s):  
Yudi Pranoto ◽  
Lina Halim ◽  
Anung Sudibyo

<p align="center"><strong>Abstrak</strong></p><p> </p><p class="11daftarpustaka">Serat abaka merupakan serat yang awet dan lentur yang diambil dari pohon pisang. Serat ini masih sangat jarang dimanfaatkan, sementara di Indonesia serat abaka bisa ditemukan di mana mana. Tujuan penelitian ini adalah untuk mengetahui sejauh mana pengaruh serat abaka terhadap kuat lentur beton. Penelitian ini diawali dengan studi literature, pengujian material (Agregat halus, agregat kasar, semen dan serat abaka), mix design beton, pembuatan benda uji, perawatan dan dilanjutkan dengan pengujian kuat lentur beton serta terakhir dilakukan analisis hasil pengujian. Dari hasil pengujian didapatkan kuat lentur maksmum terjadi pada kadar serat abaka sebesar 0,6% dengan kuat lentur 3,75 MPa, sedangkan kuat lentur terkecil terjadi pada kadar serat abaka 0% dengan kuat lentur 3,34 MPa.</p><p class="11daftarpustaka"> </p><p class="11daftarpustaka">Kata kunci: <em>serat abaka,</em><em> kuat lentur, mix deisgn</em><em></em></p><p align="center"><strong> </strong></p><p align="center"><strong> </strong></p><p align="center"><strong>Abstract</strong></p><p class="11daftarpustaka"> </p><p class="11daftarpustaka">Abaca fiber is a durable and flexible fiber taken from the banana tree. This fiber is still very rarely used, while in Indonesian abaca fiber can be found everywhere. The purpose of this study was to determine the extent of the influence of abaca fiber on the flexural strength of concrete. This research begins with literature studies, material testing (fine aggregate, coarse aggregate, cement, and abaca fiber), concrete mix design, manufacture of test objects, curing, and continues with concretes flexural strength testing and finally an analysis of the test results. From the test results, it founded that the maximum flexural strength occurred at the abaca fiber content of 0.6% with a bending strength of 3.75 MPa, and the smallest flexural strength occurred at 0% abaca fiber content with a flexural strength of 3.34 MPa.</p><p class="11daftarpustaka"> </p><p class="11daftarpustaka">Keywords: <em>Abaka fiber,</em><em> flexural strength, mix design</em><em></em></p>


2019 ◽  
Vol 11 (17) ◽  
pp. 4647 ◽  
Author(s):  
Warati ◽  
Darwish ◽  
Feyessa ◽  
Ghebrab

The increase in the demand for concrete production for the development of infrastructures in developing countries like Ethiopia leads to the depletion of virgin aggregates and high cement demand, which imposes negative environmental impacts. In sustainable development, there is a need for construction materials to focus on the economy, efficient energy utilization, and environmental protections. One of the strategies in green concrete production is the use of locally available construction materials. Scoria is widely available around the central towns of Ethiopia, especially around the rift valley regions where huge construction activities are taking place. The aim of this paper is therefore to analyze the suitability of scoria as a fine aggregate for concrete production and its effect on the properties of concrete. A differing ratio of scoria was considered as a partial replacement of fine aggregate with river sand after analyzing its engineering properties, and its effect on the mechanical properties of concrete were examined. The test results on the engineering properties of scoria revealed that the material is suitable to be used as a fine aggregate in concrete production. The replacement of scoria with river sand also enhanced the mechanical strength of the concrete. Generally, the findings of the experimental study showed that scoria could replace river sand by up to 50% for conventional concrete production.


2012 ◽  
Vol 730-732 ◽  
pp. 581-586 ◽  
Author(s):  
F. Pacheco-Torgal ◽  
A. Shasavandi ◽  
Saíd Jalali

Concrete is one of the most widely used construction materials in the world. However, the production of Portland cement as the essential constituent of concrete requires a considerable energy level. Also releases a significant amount of chemical carbon dioxide emissions and other greenhouse gases (GHGs) into the atmosphere. Global demand will increase almost 200 % by 2050 from 2010 levels. Thus, seeking an eco-efficient and sustainable concrete may be one of the main roles that the construction industry should play in sustainable construction. Portland cement can be partially replaced by cementitious and pozzolanic materials, especially those of industry by-products such as fly ash, GGBS, silica fume, ceramic waste powder and metamorphic rock dust from stone cutting industry. The aggregates are also conserved by replacing them with recycled or waste materials (among which recycled concrete), ceramic waste, post-consumer glass, and recycled tires. All of the previous alternatives are, currently, the most used. This paper summarizes current knowledge about eco-efficient concrete, by reviewing previously published work.


Sign in / Sign up

Export Citation Format

Share Document