FLEXURAL BEHAVIOR AND SHEAR CONNECTION OF SHALLOW CELLULAR COMPOSITE FLOOR BEAM

Author(s):  
Shiming Chen ◽  
Toi Limazie ◽  
Ping Gu

An experimental study of the flexural behavior and shear transfer mechanisms of shallow cellular composite floor beams is presented. Four full-scale specimens were designed and tested. The four composite shallow cellular beams are composed with “asymmetric I” steel section with regularly spaced circular openings along the web and “inverted T” steel section with regularly spaced clothoidal openings along the web. The shear connections are formed by combination of tie-bar elements with the infill concrete passing through openings. The aims of the study are to provide information on the flexural behavior of the shallow cellular composite floor beams, and to assess the shear resisting properties of the proposed shear connections. The tested composite beams showed satisfactory composite behavior and possessed satisfactory horizontal shear resistance. The proposed shear connections significantly increased the shear resistance, slip capacity and ductility of the shear connections. A tentative calculation method of the shear resistance of the proposed shear connections is developed.

Buildings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 182
Author(s):  
Zhi-Qi He ◽  
Changxue Ou ◽  
Fei Tian ◽  
Zhao Liu

This paper develops a new type of shear connection for steel-concrete composite bridges using Ultra-High Performance Concrete (UHPC) as the connection grout. The UHPC-grout strip shear connection is fabricated by preforming a roughened slot in the concrete deck slab, welding an embossed steel rib longitudinally to the upper flange of the steel girder, and casting the strip void between the slot and the steel rib with UHPC grout. The structural performance of the new connection was validated by two sets of experimental tests, including push-out testing of shear connectors and static and fatigue testing of composite beams. The results of push-out testing indicate that the UHPC-grout strip shear connection exhibits a significant improvement of ductility, ultimate capacity, and fatigue performance. The interface shear strength of the UHPC-grout strip connection is beyond 15 MPa, which is about three times that of the strip connection using traditional cementitious grouts. The ultimate capacity of the connection is dominated by the interface failure between the embossed steel and the UHPC grout. The results of composite-beam testing indicate that full composite action is developed between the precast decks and the steel beams, and the composite action remained intact after testing for two million load cycles. Finally, the trail design of a prototype bridge shows that this new connection has the potential to meet the requirements for horizontal shear.


Author(s):  
Mohammed Abdulhussein Al-Shuwaili ◽  
Alessandro Palmeri ◽  
Maria Teresa Lombardo

Push-out tests (POTs) have been widely exploited as an alternative to the more expensive full-scale bending tests to characterize the behaviour of shear connections in steel-concrete composite beams. In these tests, two concrete slabs are typically attached to a steel section with the connectors under investigation, which are then subjected to direct shear. The results allow quantifying the relationship between applied load and displacements at the steel-concrete interface. Since this relationship is highly influenced by the boundary conditions of POT samples, different experimental setups have been used, where the slabs are either restricted or free to slide horizontally, as researchers have tried to reduce any discrepancy between POT and full-scale composite beam testing. Based on a critical review of various POT configurations presented in the dedicated literature, this paper presents an efficient one-sided POT (OSPOT) method. While OSPOT and POT specimens are similar, in the proposed OPSPOT setup only one of the two slabs is directly loaded in each test, and the slab is free to move vertically. Thus, two results can be obtained from one specimen, i.e. one from each slab. A series of POTs and OSPOTs have been conducted to investigate the behaviour and the shear resistance of headed stud connectors through the two methods of testing. The results of this study than were compared with those of different POTs setups conducted by other researchers. The new OSPOT results show in general an excellent agreement with the analytical predictions offered by both British and European standards, as well as the estimated shear resistance proposed other researchers in the literature. These findings suggest that the proposed one-sided setup could be used as an efficient and economical option for conducting the POT, as it has the potential not only to double the number of results, but also to simplify the fabrication of the samples, which is important in any large experimental campaign, and to allow testing with limited capacity of the actuator. 


2018 ◽  
Vol 26 (1) ◽  
pp. 9-18
Author(s):  
Dooyong Cho ◽  
Jinwoong Choi ◽  
Hoseong Jeong

When Perfobond Rib shear connectors are used as flexural materials in structures such as bridges, they show flexural shear behavior due to external force, rather than direct shear behavior. The aim of this study is thus to analyze the difference between both behaviors. First, we prepared a specimen to analyze direct shear behavior using Perfobond Rib shear connectors, analyzed the characteristics of behavior with a push-out test and proposed a formula of shear resistance assessment. Proposed formula shows a relatively good fit with less than 10% error. A flexural shear test was then conducted based on the result of the direct shear test. Based on the static flexural test it analyzed the flexural behavior and the flexural shear stress it calculated. Direct shear stress and EN 1994-1-1 to lead and be calculated, it compared the flexural shear stress and it analyzed in about the shear resistance stress which it follows in load direction. Finally, we compared both test results, and the comparison showed that the flexural shear stress is approximately 6% stronger than the direct shear stress.


2015 ◽  
Vol 21 (6) ◽  
pp. 720-732 ◽  
Author(s):  
Redzuan Abdullah ◽  
Ahmad Beng Hong Kueh ◽  
Izni S. Ibrahim ◽  
W. Samuel Easterling

Eurocode 4 design provisions specify two methods for the design of composite slabs, namely the m-k and the partial shear connection (PSC) methods. Currently, the m-k method includes the concrete thickness and the shear span of the slab as variables while the PSC method does not. This has resulted in a better accuracy for the m-k method when slabs with varying dimensions are considered. It is demonstrated in this paper that the horizontal shear bond stress varies with the ratio of shear span to effective depth of slab, defined as the slenderness. To include such an effect, a linear shear bond-slenderness equation is proposed. Using the proposed relationship, a linear interpolation of shear bond strength based on two configurations, determined from the outcomes of the bending tests for compact and slender slabs, has been satisfactorily performed. The shear bond strength obtained from this interpolation can be used in collaboration with the existing PSC method, such that the accuracy of the prediction of the composite slab capacity can be considerably improved, the validity of which has been verified with published results from literatures.


2016 ◽  
Vol 21 (3) ◽  
pp. 04015059 ◽  
Author(s):  
Yaohua Deng ◽  
Brent M. Phares ◽  
Hongtao Dang ◽  
Justin M. Dahlberg

Forests ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 647 ◽  
Author(s):  
Tsai-Po Chien ◽  
Te-Hsin Yang ◽  
Feng-Cheng Chang

In this study, Japanese cedar (Cryptomeria japonica (L. f.) D. Don) harvested from a plantation in Taiwan was used to develop built-up beams using self-tapping screws as metal connectors and resorcinol formaldehyde resin as glue to assemble components based on various assembly configurations. Results showed that adding glue provided flexural rigidity, whereas assembly using self-tapping screws resulted in built-up beams with high ductility but relatively low flexural bearing capacity. Beams used glue exhibited approximately linear behavior, whereas those using only screws exhibited some undulating and stepwise responses, implying that shear force between the flanges and the web may cause buckling as well as the dislocation of the self-tapping screws. When using components of similar grades, adding another web can improve the performance. Furthermore, the grades of flanges can strongly influence the flexural load-bearing capacity. In addition, a smaller spacing between the screws can improve the flexural load-bearing performance, but also cause wooden components to crack. Typical bending failure modes were observed in the developed built-up beams, indicating tension failure of the bottom flange as well as slippage between flanges and the web due to horizontal shear, which also caused buckling deformations in the screws.


2020 ◽  
Vol 23 (14) ◽  
pp. 3153-3167
Author(s):  
Xinmei Yao ◽  
Xuhong Zhou ◽  
Yu Shi ◽  
Yu Guan ◽  
Yuxuan Zou

Cold-formed steel built-up section beams are commonly employed in cold-formed steel framing owing to their excellent mechanical performance. In order to develop a simplified approach for obtaining the flexural moment capacity of built-up section beams, both experimental study and numerical analysis on the flexural behavior of cold-formed steel built-up I-section and box section beams under flexural load were carried out in this study. The I-section beams are assembled from two back-to-back cold-formed steel lipped channels, and the box section beams consist of a cold-formed steel plain channel overlapping a lipped channel. First, four-point bending tests were performed on 30 simply supported specimens having 10 different configurations, and the moment capacities and failure modes of built-up section beams at ultimate loads were investigated. The failure characteristics observed were the interaction of local and distortional buckling of the web and top flange for I-section beams and local buckling of the web and top flange in pure bending for box section beams. Then, finite element models were developed to simulate the tested specimens and validated against the experimental results in terms of the moment capacities and failure characteristics. Moreover, extensive parametric studies, including section height-to-width ratio and flange width-to-thickness ratio, were conducted with the validated numerical models to identify the key factors influencing built-up section beams. Finally, a simplified calculation method considering the reduction factor of the gross section modulus of the built-up section to predict the flexural moment capacities of cold-formed steel built-up I-section and box section beams was proposed.


Sign in / Sign up

Export Citation Format

Share Document