EFFECT OF APPLIED INTERIOR THERMAL INSULATION SYSTEMS ON THE ENERGY PERFORMANCE OF A HISTORICAL/CONTEMPORARY MASONRY

Author(s):  
Jan Kočí ◽  
Jiří Maděra ◽  
Miloš Jerman

The paper is aimed at the investigation of the effect of applied internal thermal insulation system on the energy performance of historical and contemporary masonry. For that reason, sandstone masonry and ceramic brick masonry were selected as representative examples and their energy performance was analyzed using hygrothermal simulations in two states. First, each wall was simulated without being thermally insulated to obtain reference values of energy performance. Then, the walls were thermally insulated – sandstone masonry with mineral wool and ceramic brick masonry with wood fiber insulation – and new performance after wall retrofitting was quantified. All simulations are performed for two different locations to analyze the effect of boundary conditions as well. The paper demonstrates how the computational simulation using advanced moisture-dependent material parameters can be utilized for accurate assessment of thermal and energy performance of building envelopes under dynamic conditions, which is often omitted by national standards or black-box simulation tools. The results clearly indicate that application of thermal insulation on the interior side can significantly contribute to the reduction of annual heat losses varying from 66.7% to 87.2% depending on the material of thermal insulation and the location of the building.

2021 ◽  
Vol 887 ◽  
pp. 480-486
Author(s):  
T.N. Vachnina ◽  
I.V. Susoeva ◽  
A.A. Titunin ◽  
S.V. Tsybakin

Many plant wastes are not currently used in production, they are disposed of in landfills or incinerated. The aim of this study is to develop a composite thermal insulation material from unused spinning waste of flax and cotton fibers and soft wood waste. Samples of thermal insulation materials from plant waste were made by drying using the technology of production of soft wood fiber boards. For composite board defined physico-mechanical characteristics and thermal conductivity. The experiment was carried out according to a second-order plan, regression models of the dependences of the material indicators on the proportion of the binder additive, drying temperature and the proportion of wood waste additives were developed. The study showed that composites from unused spinning waste of plant fibers and soft wood waste have the necessary strength under static bending, the swelling in thickness after staying in water is much lower in comparison with the performance of boards from other plant fillers. The coefficient of thermal conductivity of the boards is comparable with the indicator for mineral wool boards.


Author(s):  
Jiří Maděra ◽  
Jan Kočí ◽  
Václav Kočí

Computational modeling represents useful tool for the assessment of newly designed or refurbished building materials and structures. Especially, when complex buildings elements need to be assessed from a hygrothermal point of view, the computational modeling is the right approach with desired power and accuracy. In this paper a historical wall element is investigated using two-dimensional simulation in order to study the effect of application of several insulation materials in various scenarios. In total two insulation materials are investigated (mineral wool, wood fiber boards) that are applied in three different scenarios. All simulations are performed under real climatic load. The results of the computational simulations reveal potential weak points in system application and can provide engineers and designers with valuable recommendations and practical information. The best results were obtained for thermal insulation from mineral wool. On the other hand, an improper system application can lead to a significant devaluation of the beneficial effects on the thermal performance of the studied brick element.


2018 ◽  
Vol 163 ◽  
pp. 08006 ◽  
Author(s):  
Balázs Nagy

Ceramic brick as building material has been used for thousands of years. Nowadays, the energy performance of new products has to meet rigorous requirements; therefore, in the design of new ceramic masonry blocks, building physical simulations are essential. The aim of this research is to evaluate existing masonry block shapes filled with different thermal insulation using conjugated heat and moisture transport finite element simulations with material properties measured in laboratory. The research compared four different internal structures: trapezoidal, triangular, rectangular, and with mixed shaped gaps according to existing masonry blocks. In the gaps, different thermal insulations were considered, such as mineral wool, expanded perlite and polyurethane foam. The research demonstrated that the perlite as filling material does not have a great effect on thermal conductivity comparing to unfilled blocks; however, polyurethane foam with an optimal internal structure can improve the thermal performance. Manufacturing inaccuracies in the materials’ hygrothermal properties influences their performance, since a little difference in thermal conductivity has a noticeable impact on thermal transmittance, and it may result in underperformance according to regulations.


2020 ◽  
Vol 12 (11) ◽  
pp. 4532 ◽  
Author(s):  
Jacek Michalak ◽  
Sebastian Czernik ◽  
Marta Marcinek ◽  
Bartosz Michałowski

The external thermal insulation composite system (ETICS) improves the energy efficiency of buildings, and nowadays, this method is the most popular to insulate buildings in many European Union (EU) countries. The article presents the impact of producing ETICS with expanded polystyrene (EPS) or mineral wool (MW) on the natural environment using the life cycle assessment (LCA) method. The data used in the calculations, related to 2017 real production, were obtained from the externally verified inventory from five manufacturing plants located in different regions of Poland. The LCA of the examined products covered modules from A1 to A3 (cradle-to-gate), according to EN 15804 standard. The study determines and analyses the values of basic indicators related to environmental impacts and environmental aspects of resource use. It comprises indicators calculated for 1 m2 ETICS for five thicknesses of the mentioned thermal insulation materials. Results show that for all environmental indicators, MW systems are characterized by a more negative environmental impact than the equivalent systems with EPS. The study aims to highlight knowledge about ETICS sustainability. The data presented in work are essential for assessment in terms of the sustainable development of ETICS. Such an evaluation is not just a need for the future but a necessity for the present.


2015 ◽  
Vol 660 ◽  
pp. 244-248 ◽  
Author(s):  
Simon Pescari ◽  
Dan Tudor ◽  
Stefan Tölgyi ◽  
Carmen Maduta

The paper aims to assess the energy performance of a thermal rehabilitated ground floor building by using new thermal insulation panels with double-side anti-condensation foil on the exterior and polyurethane foam or polyisocyanurate on the interior (PUR or PIR) in various ways. The study also wants to emphasize the benefits of using these insulating materials encouraging their further use. Therefore, five scenarios are carried out, four thermal rehabilitation scenarios and the reference building scenario, without thermal insulation. The obtained results are evaluated by comparison. The results point out the energy performance of PUR and PIR used as thermal insulation panels for the building envelope but also the economic impact and the economic efficiency that involves using such panels. This work is based on the energy efficiency requirements targeting the building envelope and takes into account mainly the behavior of the envelope elements while the heating system is treated in a simplified manner, considering its usual efficiency. The conclusions highlight the main advantages of using these panels for buildings thermal rehabilitation compared to other common materials, such as polystyrene or mineral wool.


2014 ◽  
Vol 982 ◽  
pp. 6-10 ◽  
Author(s):  
Jaroslav Pokorný ◽  
Milena Pavlíková ◽  
Jaromír Žumár ◽  
Zbyšek Pavlík ◽  
Robert Černý

Mineral wool materials are widely used for thermal insulation of buildings due to their low thermal conductivity and high fire resistivity. On this account, they are popular materials for passive fire protection of buildings. Thermal insulation boards are usually provided with hydrophobic admixtures that ensure their functional properties even in the contact with moisture. In this paper we focused on investigation of hygric transport properties of hydrophilic mineral wool materials that could find application in interior thermal insulation systems as well as in desalination and drying of salt laden materials and building structures. The obtained results give evidence of the effect of fiber orientation on studied material properties and reveal that fiber orientation perpendicular to board surface is a perspective way of materials development.


Buildings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 410
Author(s):  
Alexander Martín-Garín ◽  
José Antonio Millán-García ◽  
Jon Terés-Zubiaga ◽  
Xabat Oregi ◽  
Iñigo Rodríguez-Vidal ◽  
...  

The intervention on historic buildings through building energy retrofitting has become one of the current challenges of improving energy efficiency. Nonetheless, this building typology presents certain complexities. Among them, one of the most relevant is the protection on their façades due to the historical and/or artistic values of a given façade and, therefore, the addition of external thermal insulation is restricted. However, at the same time, in several of those buildings indoor surfaces do not present that architectural value, and then internal thermal insulation becomes a promising strategy for improving their thermal performance. Nevertheless, its application must be carefully evaluated to avoid possible pathologies caused by moisture problems. This paper aims to identify constructive solutions for interior insulation of walls free from moisture problems. For this purpose, a comprehensive analysis of a series of constructive solutions based on internal insulation has been carried out through hygrothermal simulations. The results show how the application of water-repellent impregnation becomes essential to guaranteeing the integrity of the envelope. In addition, the combination of insulations with or without inner membranes, such as smart vapor retarders or vapor diffusion barriers, has been evaluated detecting the solutions that best fit the objective. Finally, taking advantage of the great potential of 2D simulation tools, the post-processing of the data has been performed to apply the wood decay model, and thus assess the behavior of a very conflictive point in this type of intervention, i.e., the wooden beam-ends. The results in this critical point have shown how the application of the proposed constructive solutions becomes essential to guarantee the integrity of the element and how the application of traditional solutions could lead to a hazard that must be avoided.


Proceedings ◽  
2020 ◽  
Vol 51 (1) ◽  
pp. 16
Author(s):  
Rosita Norvaisiene ◽  
Paweł Krause ◽  
Vincent Buhagiar ◽  
Arūnas Burlingis ◽  
Kestutis Miskinis

This paper is the research output of the laboratory ageing of external thermal insulation composite systems (ETICS). This was carried out in order to study the changes in properties of systems consisting of combustible and non-combustible thermal insulation materials, and four different types of finishing renders. Four types of the widely used, thin-layer facade rendering systems were subjected to hydrothermal cycles in a climate chamber in conformity with ETAG 004 guidelines. Analysis of the physical and mechanical properties (i.e., variation of temperature, water absorption, bond strength and mechanical resistance) of four types of ETICS are presented. This study indicates that there are no visible defects on any renderings over the junctions between polystyrene foam (EPS) and mineral wool (MW) materials when applied in ETICS.


Sign in / Sign up

Export Citation Format

Share Document