scholarly journals How connectivity and search for producers impact production in Industry 4.0 networks

2018 ◽  
Vol 15 (4) ◽  
pp. 528-534
Author(s):  
Adriano Pereira ◽  
Eugênio De Oliveira Simonetto ◽  
Goran Putnik ◽  
Helio Cristiano Gomes Alves de Castro

Technological evolutions lead to changes in production processes; the Fourth Industrial Revolution has been called Industry 4.0, as it integrates Cyber-Physical Systems and the Internet of Things into supply chains. Large complex networks are the core structure of Industry 4.0: any node in a network can demand a task, which can be answered by one node or a set of them, collaboratively, when they are connected. In this paper, the aim is to verify how (i) network's connectivity (average degree) and (ii) the number of levels covered in nodes search impacts the total of production tasks completely performed in the network. To achieve the goal of this paper, two hypotheses were formulated and tested in a computer simulation environment developed based on a modeling and simulation study. Results showed that the higher the network's average degree is (their nodes are more connected), the greater are the number of tasks performed; in addition, generally, the greater are the levels defined in the search for nodes, the more tasks are completely executed. This paper's main limitations are related to the simulation process, which led to a simplification of production process. The results found can be applied in several Industry 4.0 networks, such as additive manufacturing and collaborative networks, and this paper is original due to the use of simulation to test this kind of hypotheses in an Industry 4.0 production network.

Author(s):  
Petar Radanliev ◽  
David De Roure ◽  
Razvan Nicolescu ◽  
Michael Huth ◽  
Omar Santos

AbstractThis paper presents a new design for artificial intelligence in cyber-physical systems. We present a survey of principles, policies, design actions and key technologies for CPS, and discusses the state of art of the technology in a qualitative perspective. First, literature published between 2010 and 2021 is reviewed, and compared with the results of a qualitative empirical study that correlates world leading Industry 4.0 frameworks. Second, the study establishes the present and future techniques for increased automation in cyber-physical systems. We present the cybersecurity requirements as they are changing with the integration of artificial intelligence and internet of things in cyber-physical systems. The grounded theory methodology is applied for analysis and modelling the connections and interdependencies between edge components and automation in cyber-physical systems. In addition, the hierarchical cascading methodology is used in combination with the taxonomic classifications, to design a new integrated framework for future cyber-physical systems. The study looks at increased automation in cyber-physical systems from a technical and social level.


Economies ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 39 ◽  
Author(s):  
Majid Ziaei Nafchi ◽  
Hana Mohelská

Industry 4.0 is the essence of the fourth Industrial revolution and is happening right now in manufacturing by using cyber-physical systems (CPS) to reach high levels of automation. Industry 4.0 is especially beneficial in highly developed countries in terms of competitive advantage, but causes unemployment because of high levels of automation. The aim of this paper is to find out if the impact of adopting Industry 4.0 on the labor markets of Iran and Japan would be the same, and to make analysis to find out whether this change is possible for Iran and Japan with their current infrastructures, economy, and policies. With the present situation of Iran in science, technology, and economy, it will be years before Iran could, or better say should, implement Industry 4.0. Japan is able to adopt Industry 4.0 much earlier than Iran and with less challenges ahead; this does not mean that the Japanese labor market would not be affected by this change but it means that those effects would not cause as many difficulties as they would for Iran.


Author(s):  
Petar Radanliev ◽  
David De Roure ◽  
Jason R.C. Nurse ◽  
Razvan Nicolescu ◽  
Michael Huth ◽  
...  

The world is currently experiencing the fourth industrial revolution driven by the newest wave of digitisation in the manufacturing sector. The term Industry 4.0 (I4.0) represents at the same time: a paradigm shift in industrial production, a generic designation for sets of strategic initiatives to boost national industries, a technical term to relate to new emerging business assets, processes and services, and a brand to mark a very particular historical and social period. I4.0 is also referred to as Industrie 4.0 the New Industrial France, the Industrial Internet, the Fourth Industrial Revolution and the digital economy. These terms are used interchangeably in this text. The aim of this article is to discuss major developments in this space in relation to the integration of new developments of IoT and cyber physical systems in the digital economy, to better understand cyber risks and economic value and risk impact. The objective of the paper is to map the current evolution and its associated cyber risks for the digital economy sector and to discuss the future developments in the Industrial Internet of Things and Industry 4.0.


2016 ◽  
Vol 1 (7) ◽  
pp. 45-48 ◽  
Author(s):  
Александр Ингеманссон ◽  
Aleksandr Ingemansson

The contents of the “Industry 4.0” concept are revealed. The basic principles of “Industry 4.0” concepts, “Internet things” and the contents of the so-called the “Fourth industrial revolution” are described. The promising trend in mechanical engineering due to the creation and integration of cyber-physical systems including technological, control, transport and other equipment is characterized. The review of current software and hardware tools for efficiency increase in mechanical engineering management of – MES-, APS-, SCADA-, MDC- systems. The purposeful trends and criteria of efficiency estimate in the introduction of cyber-physical systems for the realization of the “Industry 4.0” concept in mechanical engineering are characterized.


2021 ◽  
Vol 10 (3) ◽  
pp. 43
Author(s):  
Shuva Paul ◽  
Muhtasim Riffat ◽  
Abrar Yasir ◽  
Mir Nusrat Mahim ◽  
Bushra Yasmin Sharnali ◽  
...  

At present, the whole world is transitioning to the fourth industrial revolution, or Industry 4.0, representing the transition to digital, fully automated environments, and cyber-physical systems. Industry 4.0 comprises many different technologies and innovations, which are being implemented in many different sectors. In this review, we focus on the healthcare or medical domain, where healthcare is being revolutionized. The whole ecosystem is moving towards Healthcare 4.0, through the application of Industry 4.0 methodologies. Many technical and innovative approaches have had an impact on moving the sector towards the 4.0 paradigm. We focus on such technologies, including Internet of Things, Big Data Analytics, blockchain, Cloud Computing, and Artificial Intelligence, implemented in Healthcare 4.0. In this review, we analyze and identify how their applications function, the currently available state-of-the-art technologies, solutions to current challenges, and innovative start-ups that have impacted healthcare, with regards to the Industry 4.0 paradigm.


2021 ◽  
Vol 346 ◽  
pp. 03050
Author(s):  
Mariya Ostapenko ◽  
Vladlena Nazarova

The fourth industrial revolution, associated with the introduction of robotics, cyber-physical systems, artificial intelligence, neural networks, affects all spheres of human life. There is a need for specialists with the appropriate skills. The article discusses the elements of Industry 4.0: Internet of Things, robotization, PLM system. The impact of digitalization on the educational sector is also considered.


2020 ◽  
Vol 64 (1) ◽  
pp. 17-29 ◽  
Author(s):  
Arnulf Sebastian Schüffler ◽  
Christof Thim ◽  
Jennifer Haase ◽  
Norbert Gronau ◽  
Annette Kluge

Abstract. Industry 4.0, based on increasingly progressive digitalization, is a global phenomenon that affects every part of our work. The Internet of Things (IoT) is pushing the process of automation, culminating in the total autonomy of cyber-physical systems. This process is accompanied by a massive amount of data, information, and new dimensions of flexibility. As the amount of available data increases, their specific timeliness decreases. Mastering Industry 4.0 requires humans to master the new dimensions of information and to adapt to relevant ongoing changes. Intentional forgetting can make a difference in this context, as it discards nonprevailing information and actions in favor of prevailing ones. Intentional forgetting is the basis of any adaptation to change, as it ensures that nonprevailing memory items are not retrieved while prevailing ones are retained. This study presents a novel experimental approach that was introduced in a learning factory (the Research and Application Center Industry 4.0) to investigate intentional forgetting as it applies to production routines. In the first experiment ( N = 18), in which the participants collectively performed 3046 routine related actions (t1 = 1402, t2 = 1644), the results showed that highly proceduralized actions were more difficult to forget than actions that were less well-learned. Additionally, we found that the quality of cues that trigger the execution of routine actions had no effect on the extent of intentional forgetting.


2015 ◽  
Vol 4 (1) ◽  
pp. 63-75 ◽  
Author(s):  
A. König ◽  
K. Thongpull

Abstract. Distributed integrated sensory systems enjoy increasing impact leveraged by the surging advance of sensor, communication, and integration technology in, e.g., the Internet of Things, cyber-physical systems, Industry 4.0, and ambient intelligence/assisted-living applications. Smart kitchens and "white goods" in general have become an active field of R&D. The goal of our research is to provide assistance for unskilled or challenged consumers by efficient sensory feedback or context on ingredient quality and cooking step results, which explicitly includes decay and contamination detection. As one front end of such a culinary-assistance system, an integrated, multi-sensor, low-cost, autonomous, smart spoon device, denoted as Lab-on-Spoon (LoS), has been conceived. The first realized instance presented here features temperature, color, and impedance spectroscopy sensing in a 3-D-printed spoon package. Acquired LoS data are subject to sensor fusion and decision making on the host system. LoS was successfully applied to liquid ingredient recognition and quality assessment, including contamination detection, in several applications, e.g., for glycerol detection in wine. In future work, improvement to sensors, electronics, and algorithms will be pursued to achieve an even more robust, dependable and self-sufficient LoS system.


2021 ◽  
Vol 13 ◽  
pp. 184797902110241
Author(s):  
G Nota ◽  
D Peluso ◽  
A Toro Lazo

Facility management is an evolving discipline that has received attention from both professionals and researchers in recent years. Modern facility management considers various interests related to material resources, and among others, social and environmental interests. An important opportunity for the improvement of this discipline derives from the introduction of Industry 4.0 technologies for the management of material resources. In this paper, we shall study the problem of industrial facility management, an area with important economic implications. Starting from a facility management model for the maintenance of industrial assets, we develop a general approach to maintenance based on the Internet of Things and Cyber-Physical Systems, which allows us to reason about the implementation of an effective Organisational Facility Management Unit. The objective is the continuous improvement of maintenance activities, from which also derives the improvement of the production process performance.


2020 ◽  
Vol 17 (8) ◽  
pp. 903-915
Author(s):  
Shahryar SOROOSHIAN ◽  
Shrikant PANIGRAHI

The leap of technology has led to a paradigm shift called the “industrial revolution”. Industry 4.0 is the fourth industrial revolution which implemented the philosophy of cyber-physical systems, internet and future-oriented technologies, and smart systems with promoted human-machine interaction paradigms. The emergence of Industry 4.0 was introduced to the world as a new trend to improve working surroundings in industries and solve the problems faced by the industries. There is a limited information about Industry 4.0 and not every person understands the real meaning of Industry 4.0. Thus, the objective of this review paper is to identify the possible impacts of Industry 4.0 on manufacturing industries which will encourage more organizations to adopt Industry 4.0.


Sign in / Sign up

Export Citation Format

Share Document