MATHEMATICAL MODEL PULSE TRANSFORMERS FOR HIGH-VOLTAGE 250 kV. THE OPTIMIZATION ALGORITHM TRANSFORMER PARAMETERS

2014 ◽  
pp. 29-36
Author(s):  
A. A. Bukley
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Qian Wang ◽  
Yong Tian ◽  
Lili Lin ◽  
Ratnaji Vanga ◽  
Lina Ma

Standard scheduled flight block time (SBT) setting is of great concern for Civil Aviation Administration of China (CAAC) and airlines in China. However, the standard scheduled flight block times are set in the form of on-site meetings in practice and current literature has not provided any efficient mathematical models to calculate the flight block times fairly among the airlines. The objective of this paper is to develop and solve a mathematical model for standard SBT setting with consideration of both fairness and reliability. We use whale optimization algorithm (WOA) and an improved version of the whale optimization algorithm (IWOA) to solve the SBT setting problem. A novel nonlinear update equation of convergence factor for random iterations is used in place of the original linear one in the proposed IWOA algorithm. Experimental results show that the suggested approach is effective, and IWOA performs better than WOA in the concerned problem, whose solutions are better compared to the flight block times released by CAAC. In particular, it is interesting to find that MSE, RMSE, MAE, MAPE and Theil of the reliability in 60%–70% range are always the smallest and the average fairness of airlines is better than that of 60%–75% range. The model and solving approach presented in this article have great potential to be applied by CAAC to determine the standard SBTs strategically.


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Anmol Gupta ◽  
Sanjay Agrawal ◽  
Yash Pal

Abstract In this paper, a mathematical model of a single-channel photovoltaic thermal (PVT) air collector incorporated with a thermoelectric (TE) module has been presented. The overall electrical energy obtained from the photovoltaic thermal-thermoelectric (PVT-TE) collector is 5.78% higher than the PVT collector. Further, the grasshopper optimization algorithm (GOA) and hybrid grasshopper optimization algorithm with simulated annealing (GOA-SA) have been proposed and implemented to optimize the parameters of opaque PVT-TE collector. Although there are different parameters that influence the performance of PVT-TE system, yet in this study only four parameters, viz., length of the channel (L), width of the channel (b), mass flowrate of air in the channel (mair), and temperature of air at the inlet of channel (Tair,i) are considered for optimization. The simulation result demonstrates that the hybrid GOA-SA algorithm turned out to be an exceptionally effective method for optimal tuning of the parameters of the PVT-TE system. The result explicitly shows that the average value of overall electrical efficiency and exergy gain are 15.27% and 27.0565 W, respectively, when the parameters are optimized by the suggested GOA-SA algorithm which is way ahead with respect to the outcomes obtained with that of the calculated values or using GOA algorithm alone.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Julius Beneoluchi Odili ◽  
Mohd Nizam Mohmad Kahar

This paper proposes the African Buffalo Optimization (ABO) which is a new metaheuristic algorithm that is derived from careful observation of the African buffalos, a species of wild cows, in the African forests and savannahs. This animal displays uncommon intelligence, strategic organizational skills, and exceptional navigational ingenuity in its traversal of the African landscape in search for food. The African Buffalo Optimization builds a mathematical model from the behavior of this animal and uses the model to solve 33 benchmark symmetric Traveling Salesman’s Problem and six difficult asymmetric instances from the TSPLIB. This study shows that buffalos are able to ensure excellent exploration and exploitation of the search space through regular communication, cooperation, and good memory of its previous personal exploits as well as tapping from the herd’s collective exploits. The results obtained by using the ABO to solve these TSP cases were benchmarked against the results obtained by using other popular algorithms. The results obtained using the African Buffalo Optimization algorithm are very competitive.


Robotica ◽  
1993 ◽  
Vol 11 (2) ◽  
pp. 167-171 ◽  
Author(s):  
Maks Oblak ◽  
Karl Gotlih

SUMMARYThis paper deals with the synthesis of a robot mechanism, which has an open kinematic chain structure. The aim of the synthesis is to find optimal mechanism link lengths and the elevation of the robot mechanism base, with respect to the arbitrary chosen task which is described in a task space.A mathematical model, which describes the problem and enables one to use a nonlinear optimization algorithm, was developed. The usefulness of the approach is demonstrated by the example of the Manutec r3 mechanism with a prescribed task for the robot's end-effector.


2021 ◽  
Vol 320 ◽  
pp. 01014
Author(s):  
Vladimir Kozlovsky

The paper presents development results of the complex of simulation mathematical models of real-time and algorithms for a semi-natural test bench of the control system of a high-voltage storage battery of hybrid vehicles. They are designed to control the physical model of the test bench, simulating the characteristics of the cells of the high-voltage storage battery and other components that make up the high-voltage storage battery. This study aims to implement a complex of mathematical models and software with the required accuracy of parameters and signals that simulate the behavior of a real high-voltage battery. That intended for the development and testing of mathematical algorithms and software for the control system of a high-voltage battery of a hybrid vehicle. The main features of the developed models are an imitation of the characteristics of the cells of a high-voltage storage battery with the ability to set the initial state-of-charge (SOC) and change the charge during the operation of the model. The data were used to develop and evaluate a mathematical model of a high-voltage storage battery cell. The operating result contributes to the acceleration of the software development process for electrical complexes and control systems for high-voltage batteries for hybrid vehicles.


Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2299
Author(s):  
Łukasz Knypiński ◽  
Sebastian Kuroczycki ◽  
Fausto Pedro García Márquez

This paper presents the application of the cuckoo search (CS) algorithm in attempts to the minimization of the commutation torque ripple in the brushless DC motor (BLDC). The optimization algorithm was created based on the cuckoo’s reproductive behavior. The lumped-parameters mathematical model of the BLDC motor was developed. The values of self-inductances, mutual inductances, and back-electromotive force waveforms applied in the mathematical model were calculated by the use of the finite element method. The optimization algorithm was developed in Python 3.8. The CS algorithm was coupled with the static penalty function. During the optimization process, the shape of the voltage supplying the stator windings was determined to minimize the commutation torque ripple. Selected results of computer simulation are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document