EVALUATION OF DIAGNOSTIC PARAMETERS OF THE ELECTRO-PARAMETRIC METHOD FOR CONTROLLING THE ALIGNMENT OF SHAFTS OF CENTRIFUGAL PUMPING UNITS

2019 ◽  
pp. 38-45
Author(s):  
I. Yu. Bykov ◽  
Z. H. Yagubov ◽  
P. S. Shichev

The article contains the results of a research by definition diagnostic parameters necessary for the development of an electroparametric method for monitoring of the shafts misalignment in centrifugal pumping units. An experimental research was performed using a overhung centrifugal pump unit K 20/30 and measuring equipment. In its turn is determined function of the dependence the relative amplitude of the informative harmonic in the spectrum of the current of the electric motor phase from the parameter of the overall vibration level of a centrifugal pump unit. This function makes it possible to set the values of the diagnostic parameter for the boundaries of the technical state zones of the pump unit, which correspond to the values of the parameter of the general vibration level, in the event of the shafts misalignment. In mathematical modeling of a centrifugal pumping unit, made imitation of mechanical defect on the shaft when changing the value of the relative pump head and operating parameters for multiple units. As a result of modeling were obtained regression equations of the dependencies of the diagnostic parameter on the parameter imitation of defect at different values pump head and for multiple units.

Author(s):  
I. I. Yaremak

According to the research results, the target functions of the task of optimizing the functioning of the units according to the criteria of the regime reliability, depending on the flow of the working fluid were synthesized, which made it possible to research the influence of the regime on the reliability of operation of electric and hydraulic subsystems of the pump unit. The extreme weight of local target functions of regime reliability of electric motor and the centrifugal pump in various (especially low-flow rate) operating modes are determined. It is proposed to optimize the operating modes of  pumping units of oil pumping station with the simultaneous use of the reliability criteria of electric drive and centrifugal pump. . It was established that the maximum values of reliability of electric drive and centrifugal pump are achieved at different values of the load, which requires the involvement of multi-criteria optimization methods. The problem of optimization of the established modes of the pump unit in the multicriteria setting, taking into account the technological limitations of its subsystems was formalized. The analysis of modern methods of solving the problem of multicriteria optimization of the steady modes of operation of pump units is carried out. The method of solving the multicriterion optimization problem is substantiated, which fully takes into account the influence of operation mode on the reliability of electric and hydraulic subsystems of pumping unit. It is revealed that the most appropriate method for solving this problem is the method of approaching an ideal (utopian) point in the criteria space. With this method, the desired ratio of criteria at the optimum point is the best. The value of the "agreed optimum" of liquid flow has been determined in order to choose the optimum for the reliability of operation mode of the pumping unit of oil pumping station.


2018 ◽  
Vol 1 (2) ◽  
pp. 24-39
Author(s):  
A. Farid ◽  
A. Abou El-Azm Aly ◽  
H. Abdallah

Cavitation in pumps is the most severe condition that centrifugal pumps can work in and is leading to a loss in their performance.  Herein, the effect of semi-open centrifugal pump side clearance on the inception of pump cavitation has been investigated.  The input pump pressure has been changed from 80 to 16 kPa and the pump side clearance has been changed from 1 mm to 3 mm at a rotation speed of 1500 rpm. It has been shown that as the total input pressure decreased; the static pressure inside the impeller is reduced while the total pressure in streamwise direction has been reduced, also the pump head is constant with the reduction of the total input pressure until the cavitation is reached. Head is reduced due to cavitation inception; the head is reduced in the case of a closed impeller with a percent of 1.5% while it is reduced with a percent of 0.5% for pump side clearance of 1mm, both are at a pressure of 20 kPa.   Results also showed that the cavitation inception in the pump had been affected and delayed with the increase of the pump side clearance; the cavitation has been noticed to occur at approximate pressures of 20 kPa for side clearance of 1mm, 18 kPa for side clearances of 2mm and 16 kPa for 3mm.


2020 ◽  
Vol 23 (2) ◽  
pp. 48-51
Author(s):  
V. KONDRATENKO ◽  
◽  
V. KALYNYCHENKO ◽  

Mine drainage systems, which are used at the main drainage of mining enterprises, have a drive capacity of up to 1600kW. To reduce non-productive energy losses, as well as for the continuous operation of the mining company, mine pumps must be energy efficient and reliable. Analysis of downtime of drainage systems shows that the weak point is the unloading device. This fact can lead not only to the failure of the pumping unit, but also to possible prolonged downtime of the mine. The main disadvantage of the existing disk unloading devices of mine pumps is their low reliability and low service life, due to the rapid wear of the components of the unloading unit. The most vulnerable elements of the unloading device are the unloading rings. The need for frequent replacement and adjustment of the elements of the discharge unit is associated with disassembly and assembly of the pump directly in the pump chamber. Such actions require significant costs of unproductive manual labor of service personnel, and rapid wear of parts of the unloading device necessitates their constant replenishment. Malfunctions in the unloading device can cause significant pump failures. To increase the reliability and energy efficiency of mine drainage systems, the method of control of the unloading device was used. During the experimental studies it was found that cavitation phenomena during the operation of pumping units are absent and, accordingly, can not be the cause of wear of the elements of the unloading unit. When the pumps are operating in steady state, the displacement of the rotors was monitored for 3-4 hours on each pump unit. After data processing, it was obtained that the wear of the surface of the unloading rings occurs at a rate of 0.05-0.15mm in one hour. To determine the wear of the rings of unloading during start-up - stop of the pump, at first the indicators of measuring devices at the established mode of operation of the pump unit were fixed. Then the pump was turned off and on again. After starting the pump unit, we made sure that the operating mode of the unloading device did not change and compared the readings of the shaft position indicator before stopping and after starting the pump. From the measurements made it followed that stopping and starting the pump does not lead to noticeable wear of the unloading device. Therefore, it can be assumed that mainly the wear of the discharge rings occurs during the steady operation of the pump unit.


2018 ◽  
Vol 170 ◽  
pp. 03017 ◽  
Author(s):  
Alexey Dmitriev ◽  
Vyacheslav Gerasimov

The expediency of using a variable frequency drive for pumping units was repeatedly proved both from the point of view of the economic component and the technological one. However, the construction of automatic control systems for the operating parameters of pumping stations is mainly based on maintaining the pressure setpoint and does not include monitoring the efficiency of the aggregates working in the group and, the more so, its regulation. In this paper, an algorithm is developed for the energy efficient management of centrifugal pump units, which allows not only maintaining the pressure setpoint, but also optimizing their efficiency.


Mechanik ◽  
2017 ◽  
Vol 90 (11) ◽  
pp. 1084-1087
Author(s):  
Witold Lorenz ◽  
Marcin Janczak

The issue of a pump operation beyond its recommended range and required flow conditions to the suction flange and consequently failure of double suction axially split centrifugal pump was explained. The increased vibration level, improper configuration of the suction pipeline and used hydraulics were presented. It was also illustrated how to diagnose and solve a problem which after implementation at the target workplace has confirmed the correctness of implemented design solutions.


2015 ◽  
pp. 29-33
Author(s):  
V. A. Kopyrin ◽  
V. A. Iordan ◽  
O. V. Smirnov

The authors provide a method for compensation of the reactive power inside a well. In the environment Matlab/ Simylink a model was developed of the site of the electrical centrifugal pump unit power supply from the transformer substation. A comparison is made of the proposed method of downhole reactive power compensation with the existing method.


2019 ◽  
Vol 4 (1) ◽  
pp. 7-14
Author(s):  
M Fajri Hidayat ◽  
Nor Fajri

AbstrakPompa adalah suatu alat atau mesin untuk memindahkan cairan dari satu tempat ketempat lain melalui suatu media perpipaan dengan cara menambahkan energi pada cairan yang dipindahkan dan berlangsung secara terus menerus. Pompa yang digunakan dalam analisa ini yaitu Pompa Sentrifugal yang terdapat di gedung Universitas 17 Agustus 1945 Jakarta. Tujuan dari analisa ini yaitu untuk mengetahui kebutuhan air pada gedung Universitas 17 Agustus 1945 Jakarta. Kebutuhan air pada gedung Universitas 17 Agustus 1945 Jakarta dihitung berdasarkan luas lantai gedung dan pemakaian setiap dosen, karyawan, mahasiswa, dan rektorat di Universitas 17 Agustus 1945 Jakarta. Hasil analisa di dapatkan total kebutuhan air bersih pada gedung Universitas 17 Agustus 1945 Jakarta adalah 1.7910 Liter/hari. Kapasitas pompa sebesar 0.06 m3/s. Head total pompa sebesar 31.99 m. Putaran poros pompa yaitu 1500 rpm. Daya pompa sebesar 0.817 kW. Kecepatan spesifik sebesar 48.51 rpm. Dari hasil analisa dapat dinyatakan bahwa Pompa Sentrifugal yang berada di gedung Universitas 17 Agustus 1945 Jakarta sudah layak untuk digunakan. Kata Kunci : Kebutuhan air, kapasitas pompa, pompa sentrifugal Abstract          A pump is a device or a machine to move liquids from one place to another via a piping medium by adding energy to the fluid that is moved and continuous. The pump used in this analysis is the Centrifugal Pump contained in the building University 17 August 1945 Jakarta. The purpose of this analysis is to determine the needs of water in the building University 17 August 1945 Jakarta. Water requirement at University building August 17, 1945 Jakarta is calculated based on building floor and usage of every lecturer, staff, student, and rectorate in University 17 August 1945 Jakarta. The result of the analysis in obtaining the total clean water requirement at the building University 17 August 1945 Jakarta is 1.7910 Liter / day. The pump capacity is 0.06 m3 / s. The total pump head is 31.99 m. The rotation of the pump shaft is 1500 rpm. The pump power is 0.817 kW. Specific speed of 48.51 rpm. The results of the analysis can be stated that the Centrifugal Pump located in the building University 17 August 1945 Jakarta is feasible to use. Keywords : Water requirement, pump capacity, centrifugal pump


Perfusion ◽  
2020 ◽  
pp. 026765912093199
Author(s):  
Denis Berdajs ◽  
Ludwig K von Segesser ◽  
Francesco Maisano ◽  
Guiseppina Milano ◽  
Enrico Ferrari

Objective: The aim was to evaluate the performance of a newly developed magnetically suspended centrifugal pump head intended for use as a ventricular assistance device with a newly developed extracorporeal membrane oxygenator setup. Methods: In an experimental setup, an extracorporeal membrane oxygenator circuit was established in three calves with a mean weight of 68.2 ± 2.0 kg. A magnetically levitated centrifugal pump was tested, along with a newly designed extracorporeal membrane oxygenator console, at three different flow ranges: (a) 0.0 to 5.2 L/min, (b) 0.0 to 7.1 L/min, and (c) 0.0 to 6.0 L/min. For each setup, the animals were supported by a circuit for 6 h. Blood samples were collected just before caridiopulmonary bypass (CPB) after 10 min on bypass and after 1, 2, 5, and 6 h of perfusion for hemolysis determination and biochemical tests. Values were recorded for blood pressure, mean flow, and pump rotational speed. Analysis of variance was used for repeated measurements. Results: Mean pump flows achieved during the three 6 h pump runs for the three pump heads studied were as follows: (a) flow range 0.0 to 5.2 L/min, 3.6 ± 1.5 L/min, (b) flow range 0.0 to 7.1 L/min, 4.9 ± 1.3 L/min, and (c) flow range 0.0 to 6.0 L/min, 3.8 ± 1.5 L/min. Blood trauma, evaluated by plasma hemoglobin and lactate dehydrogenase levels, did not help in detecting any significant hemolysis. Thrombocytes and white blood cell count profiles showed no significant differences between the groups at the end of the 6 h perfusion. At the end of testing, no clot deposition was found in the oxygenator, and there was no evidence of peripheral emboli. Conclusion: The results suggest that the newly developed magnetically suspended centrifugal pump head provides satisfactory hydrodynamic performance in an acute perfusion scenario without increasing hemolysis.


Sign in / Sign up

Export Citation Format

Share Document