COMPARATIVE ANALYSIS OF CLASSIFICATION METHODS IN PROCESSING DATA ON THE ACTIVITIES OF CREDIT ORGANIZATIONS

Author(s):  
Yu. M. Beketnova

The results of solving the classification problem of credit organizations from the point of view of possible involvement in the money laundering processes are presented. A comparative analysis of the results obtained using various modern classification algorithms is carried out. When analyzing credit institutions, Rosfinmonitoring analysts have to operate with large amounts of information. The actual need for the number of objects to be analyzed is in many times greater than the capabilities of analysts. This problematic situation requires prioritization of inspections. The heterogeneous nature of information resources and their significant volume exclude the possibility of their manual processing. It is necessary to move from successive expert examinations of individual objects to parallel mass automated checks, taking into account modern methodological and instrumental possibilities in the context of digital transformation of public administration. A comparative analysis of the results of processing data on the activities of credit organizations by classification methods – logistic regression, decision trees (algorithms of Two-Class Boosted Decision Forest, AdaBoost), the method of support vectors (algorithm of Two-Class Support Vector Machine), neural network methods (algorithm of Two-Class Neural Network), Bayesian networks (the algorithm of Two-Class Bayes Pointmachine) carried out. Of the classification algorithms considered, the most accurate results were shown by the algorithm of Two-Class Boosted Decision Forest (AdaBoost). The results obtained are of great practical importance and may allow Rosfinmonitoring analysts, as well as experts of the Bank of Russia, to identify deviant credit institutions potentially involved in money laundering processes.

2021 ◽  
Author(s):  
jorge cabrera Alvargonzalez ◽  
Ana Larranaga Janeiro ◽  
Sonia Perez ◽  
Javier Martinez Torres ◽  
Lucia martinez lamas ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been and remains one of the major challenges humanity has faced thus far. Over the past few months, large amounts of information have been collected that are only now beginning to be assimilated. In the present work, the existence of residual information in the massive numbers of rRT-PCRs that tested positive out of the almost half a million tests that were performed during the pandemic is investigated. This residual information is believed to be highly related to a pattern in the number of cycles that are necessary to detect positive samples as such. Thus, a database of more than 20,000 positive samples was collected, and two supervised classification algorithms (a support vector machine and a neural network) were trained to temporally locate each sample based solely and exclusively on the number of cycles determined in the rRT-PCR of each individual. Finally, the results obtained from the classification show how the appearance of each wave is coincident with the surge of each of the variants present in the region of Galicia (Spain) during the development of the SARS-CoV-2 pandemic and clearly identified with the classification algorithm.


2021 ◽  
pp. 42-51
Author(s):  
Muhammed J. A. Patwary ◽  
S. Akter ◽  
M. S. Bin Alam ◽  
A. N. M. Rezaul Karim

Bank deposit is one of the vital issues for any financial institution. It is very challenging to predict a customer if he/she can be a depositor by analyzing related information. Some recent reports demonstrate that economic depression and the continuous decline of the economy negatively impact business organizations and banking sectors. Due to such economic depression, banks cannot attract a customer's attention. Thus, marketing is preferred to be a handy tool for the banking sector to draw customers' attention for a term deposit. The purpose of this paper is to study the performance of ensemble learning algorithms which is a novel approach to predict whether a new customer will have a term deposit or not. A Portuguese retail bank data is used for our study, containing 45,211 phone contacts with 16 input attributes and one decision attribute. The data are preprocessed by using the Discretization technique. 40,690 samples are used for training the classifiers, and 4,521 samples are used for testing. In this work, the performance of the three mostly used classification algorithms named Support Vector Machine (SVM), Neural Network (NN), and Naive Bayes (NB) are analyzed. Then the ability of ensemble methods to improve the efficiency of basic classification algorithms is investigated and experimentally demonstrated. Experimental results exhibit that the performance metrics of Neural Network (Bagging) is higher than other ensemble methods. Its accuracy, sensitivity, and specificity are 96.62%, 97.14%, and 99.08%, respectively. Although all input attributes are considered in the classification method, in the end, a descriptive analysis has shown that some input attributes have more importance for this classification. Overall, it is shown that ensemble methods outperformed the traditional algorithms in this domain. We believe our contribution can be used as a depositor prediction system to provide additional support for bank deposit prediction.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2574 ◽  
Author(s):  
Junhua Ye ◽  
Xin Li ◽  
Xiangdong Zhang ◽  
Qin Zhang ◽  
Wu Chen

Several pedestrian navigation solutions have been proposed to date, and most of them are based on smartphones. Real-time recognition of pedestrian mode and smartphone posture is a key issue in navigation. Traditional ML (Machine Learning) classification methods have drawbacks, such as insufficient recognition accuracy and poor timing. This paper presents a real-time recognition scheme for comprehensive human activities, and this scheme combines deep learning algorithms and MEMS (Micro-Electro-Mechanical System) sensors’ measurements. In this study, we performed four main experiments, namely pedestrian motion mode recognition, smartphone posture recognition, real-time comprehensive pedestrian activity recognition, and pedestrian navigation. In the procedure of recognition, we designed and trained deep learning models using LSTM (Long Short-Term Memory) and CNN (Convolutional Neural Network) networks based on Tensorflow framework. The accuracy of traditional ML classification methods was also used for comparison. Test results show that the accuracy of motion mode recognition was improved from 89.9 % , which was the highest accuracy and obtained by SVM (Support Vector Machine), to 90.74 % (LSTM) and 91.92 % (CNN); the accuracy of smartphone posture recognition was improved from 81.60 % , which is the highest accuracy and obtained by NN (Neural Network), to 93.69 % (LSTM) and 95.55 % (CNN). We give a model transformation procedure based on the trained CNN network model, and then obtain the converted . t f l i t e model, which can be run in Android devices for real-time recognition. Real-time recognition experiments were performed in multiple scenes, a recognition model trained by the CNN network was deployed in a Huawei Mate20 smartphone, and the five most used pedestrian activities were designed and verified. The overall accuracy was up to 89.39 % . Overall, the improvement of recognition capability based on deep learning algorithms was significant. Therefore, the solution was helpful to recognize comprehensive pedestrian activities during navigation. On the basis of the trained model, a navigation test was performed; mean bias was reduced by more than 1.1 m. Accordingly, the positioning accuracy was improved obviously, which is meaningful to apply DL in the area of pedestrian navigation to make improvements.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Ruixia Yan ◽  
Zhijie Xia ◽  
Yanxi Xie ◽  
Xiaoli Wang ◽  
Zukang Song

The product online review text contains a large number of opinions and emotions. In order to identify the public’s emotional and tendentious information, we present reinforcement learning models in which sentiment classification algorithms of product online review corpus are discussed in this paper. In order to explore the classification effect of different sentiment classification algorithms, we conducted a research on Naive Bayesian algorithm, support vector machine algorithm, and neural network algorithm and carried out some comparison using a concrete example. The evaluation indexes and the three algorithms are compared in different lengths of sentence and word vector dimensions. The results present that neural network algorithm is effective in the sentiment classification of product online review corpus.


2021 ◽  
Vol 8 (2) ◽  
pp. 311
Author(s):  
Mohammad Farid Naufal

<p class="Abstrak">Cuaca merupakan faktor penting yang dipertimbangkan untuk berbagai pengambilan keputusan. Klasifikasi cuaca manual oleh manusia membutuhkan waktu yang lama dan inkonsistensi. <em>Computer vision</em> adalah cabang ilmu yang digunakan komputer untuk mengenali atau melakukan klasifikasi citra. Hal ini dapat membantu pengembangan <em>self autonomous machine</em> agar tidak bergantung pada koneksi internet dan dapat melakukan kalkulasi sendiri secara <em>real time</em>. Terdapat beberapa algoritma klasifikasi citra populer yaitu K-Nearest Neighbors (KNN), Support Vector Machine (SVM), dan Convolutional Neural Network (CNN). KNN dan SVM merupakan algoritma klasifikasi dari <em>Machine Learning</em> sedangkan CNN merupakan algoritma klasifikasi dari Deep Neural Network. Penelitian ini bertujuan untuk membandingkan performa dari tiga algoritma tersebut sehingga diketahui berapa gap performa diantara ketiganya. Arsitektur uji coba yang dilakukan adalah menggunakan 5 cross validation. Beberapa parameter digunakan untuk mengkonfigurasikan algoritma KNN, SVM, dan CNN. Dari hasil uji coba yang dilakukan CNN memiliki performa terbaik dengan akurasi 0.942, precision 0.943, recall 0.942, dan F1 Score 0.942.</p><p class="Abstrak"> </p><p class="Abstrak"><em><strong>Abstract</strong></em></p><p class="Abstract"><em>Weather is an important factor that is considered for various decision making. Manual weather classification by humans is time consuming and inconsistent. Computer vision is a branch of science that computers use to recognize or classify images. This can help develop self-autonomous machines so that they are not dependent on an internet connection and can perform their own calculations in real time. There are several popular image classification algorithms, namely K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and Convolutional Neural Network (CNN). KNN and SVM are Machine Learning classification algorithms, while CNN is a Deep Neural Networks classification algorithm. This study aims to compare the performance of that three algorithms so that the performance gap between the three is known. The test architecture is using 5 cross validation. Several parameters are used to configure the KNN, SVM, and CNN algorithms. From the test results conducted by CNN, it has the best performance with 0.942 accuracy, 0.943 precision, 0.942 recall, and F1 Score 0.942.</em></p><p class="Abstrak"><em><strong><br /></strong></em></p>


Author(s):  
Maria Morgan ◽  
Carla Blank ◽  
Raed Seetan

<p>This paper investigates the capability of six existing classification algorithms (Artificial Neural Network, Naïve Bayes, k-Nearest Neighbor, Support Vector Machine, Decision Tree and Random Forest) in classifying and predicting diseases in soybean and mushroom datasets using datasets with numerical or categorical attributes. While many similar studies have been conducted on datasets of images to predict plant diseases, the main objective of this study is to suggest classification methods that can be used for disease classification and prediction in datasets that contain raw measurements instead of images. A fungus and a plant dataset, which had many differences, were chosen so that the findings in this paper could be applied to future research for disease prediction and classification in a variety of datasets which contain raw measurements. A key difference between the two datasets, other than one being a fungus and one being a plant, is that the mushroom dataset is balanced and only contained two classes while the soybean dataset is imbalanced and contained eighteen classes. All six algorithms performed well on the mushroom dataset, while the Artificial Neural Network and k-Nearest Neighbor algorithms performed best on the soybean dataset. The findings of this paper can be applied to future research on disease classification and prediction in a variety of dataset types such as fungi, plants, humans, and animals.</p>


Advancement in medical science has always been one of the most vital aspects of the human race. With the progress in technology, the use of modern techniques and equipment is always imposed on treatment purposes. Nowadays, machine learning techniques have widely been used in medical science for assuring accuracy. In this work, we have constructed computational model building techniques for liver disease prediction accurately. We used some efficient classification algorithms: Random Forest, Perceptron, Decision Tree, K-Nearest Neighbors (KNN), and Support Vector Machine (SVM) for predicting liver diseases. Our works provide the implementation of hybrid model construction and comparative analysis for improving prediction performance. At first, classification algorithms are applied to the original liver patient datasets collected from the UCI repository. Then we analyzed features and tweaked to improve the performance of our predictor and made a comparative analysis among the classifiers. We examined that, KNN algorithm outperformed all other techniques with feature selection.


Sign in / Sign up

Export Citation Format

Share Document