Preparation and Application of Waterproof Polypropylene Nonwoven Fabrics for Grape Bagging

2020 ◽  
Vol 7 (4) ◽  
pp. 1-8
Author(s):  
Jifeng Li ◽  
Qun Zhuang ◽  
Ting Fang ◽  
Zhaofang Du

Bags of nonwoven fabrics with good air or water permeability are widely used in fruit agriculture due to their porosity. However, vegetables or fruit in bags often rot, a problem caused by the water permeability of the bags in high-moisture environments. Therefore, to improve the water repellency of polypropylene (PP) nonwoven fabric bags for fruit, a water-repellent treatment was applied by the surface deposition of a film composed of a water-repellent agent and a crosslinking agent. The effect of the waterproof bags made of PP spun-bonded nonwoven fabric on the grape growth microenvironment was investigated. This study provided technical inspiration for the development of related plant protection products using nonwoven engineered after-treatments.

2013 ◽  
Vol 457-458 ◽  
pp. 61-64
Author(s):  
Ching Wen Lou ◽  
Wen Hao Hsing ◽  
Chien Teng Hsieh ◽  
Jia Horng Lin

Geotextiles made of nonwoven fabrics can be used in different fields, such as groynes, dams, seawalls, revetments, dunes, and hillsides, and the structures of nonwoven fabrics can be changed accordingly. This study explores the influence of different content of Kevlar fibers on the mechanical and physical properties of Kevlar/Polyester (PET) complex nonwoven fabrics. As specified in a nonwoven fabric manufacturing process Kevlar fibers and PET fibers are blended with various ratios to form Kevlar/PET complex nonwoven fabrics, which are then tested for tear strength, air permeability, and water permeability. The experiment results show that increasing Kevlar fibers reduces the tear strength, air permeability, and water permeability.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 370
Author(s):  
Arkadiusz Artyszak ◽  
Dariusz Gozdowski ◽  
Alicja Siuda

Water shortage and drought are a growing problem in Europe. Therefore, effective methods for limiting its effects are necessary. At the same time, the “field to fork” strategy adopted by the European Commission aims to achieve a significant reduction in the use of plant protection products and fertilizers in the European Union. In an experiment conducted in 2018–2020, the effect of the method of foliar fertilization containing silicon and potassium on the yield and technological quality of sugar beet roots was assessed. The fertilizer was used in seven combinations, differing in the number and time of application. The best results were obtained by treating plants during drought stress. The better soil moisture for the plants, the smaller the pure sugar yield increase was observed. It is difficult to clearly state which combination of silicon and potassium foliar application is optimal, as their effects do not differ greatly.


Author(s):  
Gavin Lewis ◽  
Axel Dinter ◽  
Charlotte Elston ◽  
Michael Thomas Marx ◽  
Christoph Julian Mayer ◽  
...  

2021 ◽  
Author(s):  
Christian J. Kuster ◽  
Nicola J. Hewitt ◽  
Clare Butler Ellis ◽  
Christian Timmermann ◽  
Thomas Anft

Author(s):  
Marco Grella ◽  
Fabrizio Gioelli ◽  
Paolo Marucco ◽  
Ingrid Zwertvaegher ◽  
Eric Mozzanini ◽  
...  

AbstractThe pulse width modulation (PWM) spray system is the most advanced technology to obtain variable rate spray application without varying the operative sprayer parameters (e.g. spray pressure, nozzle size). According to the precision agriculture principles, PWM is the prime technology that allows to spray the required amount where needed without varying the droplet size spectra which benefits both the uniformity of spray quality and the spray drift reduction. However, some concerns related to the effect of on–off solenoid valves and the alternating on/off action of adjacent nozzles on final uneven spray coverage (SC) have arisen. Further evaluations of PWM systems used for spraying 3D crops under field conditions are welcomed. A tower-shaped airblast sprayer equipped with a PWM was tested in a vineyard. Twelve configurations, combining duty cycles (DC: 30, 50, 70, 100%) and forward speeds (FS: 4, 6, 8 km h−1), were tested. Two methodologies, namely field-standardized and real field conditions, were adopted to evaluate the effect of DC and FS on (1) SC variability (CV%) along both the sprayer travel direction and the vertical spray profile using long water sensitive papers (WSP), and (2) SC uniformity (IU, index value) within the canopy at different depths and heights, respectively. Furthermore, the SC (%) and deposit density (Nst, no stains cm−2), determined using short WSP, were used to evaluate the spray application performances taking into account the spray volumes applied. Under field-controlled conditions, the pulsing of the PWM system affects both the SC variability measured along the sprayer travel direction and along the vertical spray profile. In contrast, under real field conditions, the PWM system does not affect the uniformity of SC measured within the canopy. The relationship between SC and Nst allowed identification of the ranges of 200–250 and 300–370 l ha−1 as the most suitable spray volumes to be applied for insecticide and fungicide plant protection products, respectively.


Author(s):  
David Quéré ◽  
Mathilde Reyssat

Superhydrophobic materials recently attracted a lot of attention, owing to the potential practical applications of such surfaces—they literally repel water, which hardly sticks to them, bounces off after an impact and slips on them. In this short review, we describe how water repellency arises from the presence of hydrophobic microstructures at the solid surface. A drop deposited on such a substrate can float above the textures, mimicking at room temperature what happens on very hot plates; then, a vapour layer comes between the solid and the volatile liquid, as described long ago by Leidenfrost. We present several examples of superhydrophobic materials (either natural or synthetic), and stress more particularly the stability of the air cushion—the liquid could also penetrate the textures, inducing a very different wetting state, much more sticky, due to the possibility of pinning on the numerous defects. This description allows us to discuss (in quite a preliminary way) the optimal design to be given to a solid surface to make it robustly water repellent.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3742
Author(s):  
Payam Sadrolodabaee ◽  
Josep Claramunt ◽  
Mònica Ardanuy ◽  
Albert de la Fuente

Currently, millions of tons of textile waste from the garment and textile industries are generated worldwide each year. As a promising option in terms of sustainability, textile waste fibers could be used as internal reinforcement of cement-based composites by enhancing ductility and decreasing crack propagation. To this end, two extensive experimental programs were carried out, involving the use of either fractions of short random fibers at 6–10% by weight or nonwoven fabrics in 3–7 laminate layers in the textile waste-reinforcement of cement, and the mechanical and durability properties of the resulting composites were characterized. Flexural resistance in pre- and post-crack, toughness, and stiffness of the resulting composites were assessed in addition to unrestrained drying shrinkage testing. The results obtained from those programs were analyzed and compared to identify the optimal composite and potential applications. Based on the results of experimental analysis, the feasibility of using this textile waste composite as a potential construction material in nonstructural concrete structures such as facade cladding, raised floors, and pavements was confirmed. The optimal composite was proven to be the one reinforced with six layers of nonwoven fabric, with a flexural strength of 15.5 MPa and a toughness of 9.7 kJ/m2.


Sign in / Sign up

Export Citation Format

Share Document