scholarly journals Advantages and limitations of using foamed bitumen

Author(s):  
Ali Saleh ◽  
László Gáspár

Foamed asphalt refers to a bituminous mixture of road-building aggregates and foamed bitumen, produced by a cold mix process. There are a lot of related issue that has not been sufficiently investigated so far. It is worthwhile to overview the main theoretical and practical results in the field in several countries including those of the authors of the paper. It is clear that the foamed asphalt is usually characterized by high quality and reasonable cost, can be used in cold road pavement rehabilitation, in addition to it the technique is environ-mentally friendly preserving natural resources. Using foamed bitumen reduces the emissions of carbon dioxide and gases resulting from combustion, especially when it is used as a cold rehabilitation binder and mixed with re-claimed asphalt pavement materials.

Author(s):  
Vasyl Nagaychuk ◽  
Sergii Illiash ◽  
Tatyana Tereshchenko

Rehabilitation of asphalt concrete layers of road pavements using HIR technologies enables effective elimination of surface defects (rutting, cracking, raveling, bleeding (flushing)) including defects caused by the non-conformity of asphalt concrete to the standard specifications. Due to the economical and ecological advantages, HIR technologies belong to the present-day effective alternative methods of rehabilitation of asphalt concrete pavements. In Ukraine, HIR technologies were first applied on intermediate repair works on an area of the international road I-01 “Kyiv-Chernihiv-Novyye Yarylovichi” in the 2013. Now, HIR technologies have been applied on repair works on numerical objects including areas on such state motor roads as I-01, I-06, N-09, R-10, R-67. The presented paper analyzes the results of monitoring of materials and technologies which was aimed on HIR performance investigation supported by State Road Agency of Ukraine (Ukravtodor) throughout 2014-2018. The results of monitoring of HIR technologies including laboratory evaluation of materials and also field testing of the rehabilitated pavements led to the conclusions fitted by the world-wide experience on implementation of HIR technologies. 1. Being applied to the structurally sound pavements, HIR provides effective elimination of surface defects of flexible pavement to a depth of (50-60) mm including defects caused by the non-conformity of asphalt concrete to the standard specifications. However, HIR is not suitable for existing asphalt pavements which have too much variation in asphalt concrete composition and thickness within the project limits. 2. The efficiency of asphalt pavement rehabilitation using HIR technologies largely depends on precise engineering consideration which determines the efficiency of preparatory (repair) works including some special works such as: – correction of cracks in case of cracking that extends below the depth of hot recycling; – re-compaction of an unbound base layer(s) in case of the insufficient compaction causing “alligatored” network-like cracking of asphalt pavement. 3. Proper technical and working conditions of the rehabilitated pavement during the nominal life cycle could be maintained by overlaying the surface treatment using bituminous emulsion materials or by single-pass overlaying a new hot-mixed asphalt concrete layer. Investigations accomplished during the implementation of HIR technologies allow enhance quality of recycled materials and also promote the entire adaptation of HIR technologies to the Ukrainian standards. Keywords: asphalt pavement rehabilitation, hot in-place recycling, recycled asphalt concrete, field testing, road pavement strength measurement, rutting measurement.


2020 ◽  
Vol 841 ◽  
pp. 108-113
Author(s):  
Marcos Ariel Villanueva Guzmán ◽  
Horacio Delgado Alamilla ◽  
Elia Mercedes Alonso Guzmán ◽  
Wilfrido Martínez Molina ◽  
Hugo Luis Chávez García ◽  
...  

Foamed bitumen improves the properties of base layer, increasing the number of equivalent axles allowed, as result of this is a durable pavement. To achieve this, base layer’s design must count with an amount of filler, to increase the stony aggregate fraction. This research consists with two different types of filler, lime and cement, 1% in dosage respect to the stony aggregate weight. Has been discovered now, that the RAP (reclaimed asphalt pavement) aggregate in addition to mitigate environmental problems, has a significant impact value on the mechanic resistance of the mix.


Author(s):  
Audrius Vaitkus ◽  
Judita Gražulytė ◽  
Lina Juknevičiūtė-Žilinskienė ◽  
Vitalijus Andrejevas

One of the key goals in the EU White Paper is to reduce carbon emissions in transport by 60% by 2050. Consequently, during the past years an effect on the environment became a decisive factor in selecting materials and technologies for road construction and rehabilitation. Cold recycling is a reasonable solution in asphalt pavement rehabilitation because it is economical and old asphalt pavements can be reused. This technology differs from others by mixing temperature. Besides, cold recycling does not require additional heating. These benefits result in wide application of cold recycling around the world. In Lithuania, cold recycling has been used for more than 15 years. Both technologies, i.e. cold in-plant recycling and cold in-place recycling, were used. In both technologies reclaimed asphalt pavement (RAP) is bound with bituminous binders (foamed bitumen or bitumen emulsion), hydraulic binders (cement) or a combination of bituminous and hydraulic binders depending on the base course specifications. This paper focuses on the Lithuanian experience in cold recycling of asphalt pavements using different types of cold recycling and binders.


2020 ◽  
Vol 4 (2) ◽  
pp. 172-179
Author(s):  
Yogi Oktopianto ◽  
Dwi Wahyu Hidayat

The use of recycling technologies to the principles of green roads should get priority. Reclaimed Asphalt Pavement (RAP) has not been used properly is a problem in this study. Hotmix Recycling is a recycling technique that can be applied to road pavement rehabilitation and maintenance. The research was conducted to determine the cost-efficiency of recycled asphalt. The method used in this research is to analyze the unit price of conventional asphalt maintenance and to analyze the unit price of recycled asphalt in order to find out how much efficiency is obtained of asphalt pavement recycled. The results showed that the cost of conventional asphalt is Rp.1,160,000 per ton and the price of recycled asphalt is Rp.915,000 per ton, there is a savings of Rp. 245,000 per ton, The use of recycled asphalt technology in the periodic asphalt of the Ir. Wiyoto Wiyono toll roads can save operational and maintenance costs of Rp. 3,013,500,000.00


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 563
Author(s):  
Łukasz Skotnicki ◽  
Jarosław Kuźniewski ◽  
Antoni Szydło

The reduction in natural resources and aspects of environmental protection necessitate alternative uses of waste materials in the area of construction. Recycling is also observed in road construction where mineral–cement emulsion (MCE) mixtures are applied. The MCE mix is a conglomerate that can be used to make the base layer in road pavement structures. MCE mixes contain reclaimed asphalt from old, degraded road surfaces, aggregate improving the gradation, asphalt emulsion, and cement as a binder. The use of these ingredients, especially cement, can cause shrinkage and cracks in road layers. The article presents selected issues related to the problem of cracking in MCE mixtures. The authors of the study focused on reducing the cracking phenomenon in MCE mixes by using an innovative cement binder with recycled materials. The innovative cement binder based on dusty by-products from cement plants also contributes to the optimization of the recycling process in road surfaces. The research was carried out in the field of stiffness, fatigue life, crack resistance, and shrinkage analysis of mineral–cement emulsion mixes. It was found that it was possible to reduce the stiffness and the cracking in MCE mixes. The use of innovative binders will positively affect the durability of road pavements.


2012 ◽  
Vol 174-177 ◽  
pp. 1188-1192 ◽  
Author(s):  
Lian Yu Wei ◽  
Zhi Yu Guo

In recent years, due to the dual pressures of resources and the environment,the clod recycled technology renovation and expansion of the old road and new road construction process increasingly attention increasingly wide range of applications. In this paper, the water stability of the cold recycled materials in asphalt pavement on cement additives, frozen stability, thermal shrinkage resistance, dry Shrinkage thefour indicators of experiments to evaluate its durability, and compared with the typical semi-rigid material. To verify the feasibility of the cold recycled material as road base material.


2021 ◽  
Vol 278 ◽  
pp. 122389
Author(s):  
Jie Gao ◽  
Jiangang Yang ◽  
Di Yu ◽  
Yu Jiang ◽  
Kaiguo Ruan ◽  
...  

2021 ◽  
Vol 16 (2) ◽  
pp. 48-65
Author(s):  
Audrius Vaitkus ◽  
Judita Gražulytė ◽  
Andrius Baltrušaitis ◽  
Jurgita Židanavičiūtė ◽  
Donatas Čygas

Properly designed and maintained asphalt pavements operate for ten to twenty-five years and have to be rehabilitated after that period. Cold in-place recycling has priority over all other rehabilitation methods since it is done without preheating and transportation of reclaimed asphalt pavement. Multiple researches on the performance of cold recycled mixtures have been done; however, it is unclear how the entire pavement structure (cold recycled asphalt pavement overlaid with asphalt mixture) performs depending on binding agents. The main objective of this research was to evaluate the performance of cold in-place recycled asphalt pavements considering binding agents (foamed bitumen in combination with cement or only cement) and figure out which binder leads to the best pavement performance. Three road sections rehabilitated in 2000, 2003, and 2005 were analysed. The performance of the entire pavement structure was evaluated in terms of the International Roughness Index, rut depth, and pavement surface distress in 2013 and 2017.


Sign in / Sign up

Export Citation Format

Share Document