scholarly journals Effects of water immersion on the recovery of upper and lower body anaerobic power following a wrestling session

2016 ◽  
Vol 13 (1) ◽  
pp. 1402
Author(s):  
Asim Cengiz ◽  
Mehmet Settar Kocak

The aim of this study was to examine effects of cold-water immersion after exercise on powerresponses of wrestlers. Twenty elite male wrestlers were formed by similar age, height, weight and fitness parameters. The wrestling training session included a 60-minute of vigorous exercise. It consisted of warm-up exercises, standing technical and tactical exercises that mostly allocates arm and leg muscles. Vertical jump height, ropes climb height, and delayed onset of soreness was measured before, after, 24 h and 48 hors after the wrestling training. Cold-water immersion caused decrements in power loss at each follow-up time in comparison to a thermo neutral immersion.  It can be suggested that the longer time needed for power to return to normal levels after cold treatment and assessment of varied contraction types may present a more broad demonstration of muscle function and consequential capacity for dynamic exercise following exercise-induced muscle damage.

PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1841 ◽  
Author(s):  
Kane J. Hayter ◽  
Kenji Doma ◽  
Moritz Schumann ◽  
Glen B. Deakin

This study examined the effects of cold-water immersion (CWI) and cold air therapy (CAT) on maximal cycling performance (i.e. anaerobic power) and markers of muscle damage following a strength training session. Twenty endurance-trained but strength-untrained male (n = 10) and female (n = 10) participants were randomised into either: CWI (15 min in 14 °C water to iliac crest) or CAT (15 min in 14 °C air) immediately following strength training (i.e. 3 sets of leg press, leg extensions and leg curls at 6 repetition maximum, respectively). Creatine kinase, muscle soreness and fatigue, isometric knee extensor and flexor torque and cycling anaerobic power were measured prior to, immediately after and at 24 (T24), 48 (T48) and 72 (T72) h post-strength exercises. No significant differences were found between treatments for any of the measured variables (p > 0.05). However, trends suggested recovery was greater in CWI than CAT for cycling anaerobic power at T24 (10% ± 2%, ES = 0.90), T48 (8% ± 2%, ES = 0.64) and T72 (8% ± 7%, ES = 0.76). The findings suggest the combination of hydrostatic pressure and cold temperature may be favourable for recovery from strength training rather than cold temperature alone.


2017 ◽  
Vol 12 (7) ◽  
pp. 886-892 ◽  
Author(s):  
Christos K. Argus ◽  
James R. Broatch ◽  
Aaron C. Petersen ◽  
Remco Polman ◽  
David J. Bishop ◽  
...  

Context:An athlete’s ability to recover quickly is important when there is limited time between training and competition. As such, recovery strategies are commonly used to expedite the recovery process.Purpose:To determine the effectiveness of both cold-water immersion (CWI) and contrast water therapy (CWT) compared with control on short-term recovery (<4 h) after a single full-body resistance-training session.Methods:Thirteen men (age 26 ± 5 y, weight 79 ± 7 kg, height 177 ± 5 cm) were assessed for perceptual (fatigue and soreness) and performance measures (maximal voluntary isometric contraction [MVC] of the knee extensors, weighted and unweighted countermovement jumps) before and immediately after the training session. Subjects then completed 1 of three 14-min recovery strategies (CWI, CWT, or passive sitting [CON]), with the perceptual and performance measures reassessed immediately, 2 h, and 4 h postrecovery.Results:Peak torque during MVC and jump performance were significantly decreased (P < .05) after the resistance-training session and remained depressed for at least 4 h postrecovery in all conditions. Neither CWI nor CWT had any effect on perceptual or performance measures over the 4-h recovery period.Conclusions:CWI and CWT did not improve short-term (<4-h) recovery after a conventional resistance-training session.


2016 ◽  
Vol 51 (3) ◽  
pp. 252-257 ◽  
Author(s):  
Cory L. Butts ◽  
Brendon P. McDermott ◽  
Brian J. Buening ◽  
Jeffrey A. Bonacci ◽  
Matthew S. Ganio ◽  
...  

Exercise conducted in hot, humid environments increases the risk for exertional heat stroke (EHS). The current recommended treatment of EHS is cold-water immersion; however, limitations may require the use of alternative resources such as a cold shower (CS) or dousing with a hose to cool EHS patients.Context: To investigate the cooling effectiveness of a CS after exercise-induced hyperthermia.Objective: Randomized, crossover controlled study.Design: Environmental chamber (temperature = 33.4°C ± 2.1°C; relative humidity = 27.1% ± 1.4%).Setting: Seventeen participants (10 male, 7 female; height = 1.75 ± 0.07 m, body mass = 70.4 ± 8.7 kg, body surface area = 1.85 ± 0.13 m2, age range = 19–35 years) volunteered.Patients or Other Participants: On 2 occasions, participants completed matched-intensity volitional exercise on an ergometer or treadmill to elevate rectal temperature to ≥39°C or until participant fatigue prevented continuation (reaching at least 38.5°C). They were then either treated with a CS (20.8°C ± 0.80°C) or seated in the chamber (control [CON] condition) for 15 minutes.Intervention(s): Rectal temperature, calculated cooling rate, heart rate, and perceptual measures (thermal sensation and perceived muscle pain).Main Outcome Measure(s): The rectal temperature (P = .98), heart rate (P = .85), thermal sensation (P = .69), and muscle pain (P = .31) were not different during exercise for the CS and CON trials (P &gt; .05). Overall, the cooling rate was faster during CS (0.07°C/min ± 0.03°C/min) than during CON (0.04°C/min ± 0.03°C/min; t16 = 2.77, P = .01). Heart-rate changes were greater during CS (45 ± 20 beats per minute) compared with CON (27 ± 10 beats per minute; t16 = 3.32, P = .004). Thermal sensation was reduced to a greater extent with CS than with CON (F3,45 = 41.12, P &lt; .001).Results: Although the CS facilitated cooling rates faster than no treatment, clinicians should continue to advocate for accepted cooling modalities and use CS only if no other validated means of cooling are available.Conclusions:


2017 ◽  
Author(s):  
Danny Christiansen ◽  
Robyn M. Murphy ◽  
James R. Broatch ◽  
Jens Bangsbo ◽  
Michael J. McKenna ◽  
...  

AbstractWe investigated the effect of a session of sprint-interval exercise on the mRNA content of NKA isoforms (α1-3, β1-3) and FXYD1 in human skeletal muscle. To explore some of the cellular stressors involved in this regulation, we evaluated the association between these mRNA responses and those of the transcription factors Sp1, Sp3 and HIF-1α. Given cold exposure perturbs muscle redox homeostasis, which may be one mechanism important for increases in NKA-isoform mRNA, we also explored the effect of post-exercise cold-water immersion (CWI) on the mRNA responses. Muscle was sampled from nineteen men before (Pre) and after (+0h, +3h) exercise plus passive rest (CON, n=10) or CWI (10°C; COLD, n=9). In COLD, exercise increased NKAα2 and Sp1 mRNA (+0h, p<0.05). These genes remained unchanged in CON (p>0.05). In both conditions, exercise increased NKAα1, NKAβ3 and HIF-1α mRNA (+3h; p <0.05), decreased NKAβ2 mRNA (+3h; p<0.05), whereas NKAα3, NKAβ1, FXYD1 and Sp3 mRNA remained unchanged (p>0.05). These human findings highlight 1) sprint-interval exercise increases the mRNA content of NKA α1 and β3, and decreases that of NKA β2, which may relate, in part, to exercise-induced muscle hypoxia, and 2) post-exercise CWI augments NKAα2 mRNA, which may be associated with promoted Sp1 activation.


2021 ◽  
Vol 3 ◽  
Author(s):  
Mohammed Ihsan ◽  
Chris R. Abbiss ◽  
Robert Allan

In the last decade, cold water immersion (CWI) has emerged as one of the most popular post-exercise recovery strategies utilized amongst athletes during training and competition. Following earlier research on the effects of CWI on the recovery of exercise performance and associated mechanisms, the recent focus has been on how CWI might influence adaptations to exercise. This line of enquiry stems from classical work demonstrating improved endurance and mitochondrial development in rodents exposed to repeated cold exposures. Moreover, there was strong rationale that CWI might enhance adaptations to exercise, given the discovery, and central role of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) in both cold- and exercise-induced oxidative adaptations. Research on adaptations to post-exercise CWI have generally indicated a mode-dependant effect, where resistance training adaptations were diminished, whilst aerobic exercise performance seems unaffected but demonstrates premise for enhancement. However, the general suitability of CWI as a recovery modality has been the focus of considerable debate, primarily given the dampening effect on hypertrophy gains. In this mini-review, we highlight the key mechanisms surrounding CWI and endurance exercise adaptations, reiterating the potential for CWI to enhance endurance performance, with support from classical and contemporary works. This review also discusses the implications and insights (with regards to endurance and strength adaptations) gathered from recent studies examining the longer-term effects of CWI on training performance and recovery. Lastly, a periodized approach to recovery is proposed, where the use of CWI may be incorporated during competition or intensified training, whilst strategically avoiding periods following training focused on improving muscle strength or hypertrophy.


2010 ◽  
Vol 24 (12) ◽  
pp. 3313-3317 ◽  
Author(s):  
Patrick G Dixon ◽  
William J Kraemer ◽  
Jeff S Volek ◽  
Robert L Howard ◽  
Ana L Gomez ◽  
...  

2009 ◽  
Vol 44 (1) ◽  
pp. 84-93 ◽  
Author(s):  
Brendon P. McDermott ◽  
Douglas J. Casa ◽  
Matthew S. Ganio ◽  
Rebecca M. Lopez ◽  
Susan W. Yeargin ◽  
...  

Abstract Objective: To assess existing original research addressing the efficiency of whole-body cooling modalities in the treatment of exertional hyperthermia. Data Sources: During April 2007, we searched MEDLINE, EMBASE, Scopus, SportDiscus, CINAHL, and Cochrane Reviews databases as well as ProQuest for theses and dissertations to identify research studies evaluating whole-body cooling treatments without limits. Key words were cooling, cryotherapy, water immersion, cold-water immersion, ice-water immersion, icing, fanning, bath, baths, cooling modality, heat illness, heat illnesses, exertional heatstroke, exertional heat stroke, heat exhaustion, hyperthermia, hyperthermic, hyperpyrexia, exercise, exertion, running, football, military, runners, marathoner, physical activity, marathoning, soccer, and tennis. Data Synthesis: Two independent reviewers graded each study on the Physiotherapy Evidence Database (PEDro) scale. Seven of 89 research articles met all inclusion criteria and a minimum score of 4 out of 10 on the PEDro scale. Conclusions: After an extensive and critical review of the available research on whole-body cooling for the treatment of exertional hyperthermia, we concluded that ice-water immersion provides the most efficient cooling. Further research comparing whole-body cooling modalities is needed to identify other acceptable means. When ice-water immersion is not possible, continual dousing with water combined with fanning the patient is an alternative method until more advanced cooling means can be used. Until future investigators identify other acceptable whole-body cooling modalities for exercise-induced hyperthermia, ice-water immersion and cold-water immersion are the methods proven to have the fastest cooling rates.


Medicina ◽  
2020 ◽  
Vol 56 (10) ◽  
pp. 539
Author(s):  
Yuri Hosokawa ◽  
Luke N. Belval ◽  
William M. Adams ◽  
Lesley W. Vandermark ◽  
Douglas J. Casa

Background and objectives: Exertional heat stroke (EHS) is a potentially lethal, hyperthermic condition that warrants immediate cooling to optimize the patient outcome. The study aimed to examine if a portable cooling vest meets the established cooling criteria (0.15 °C·min−1 or greater) for EHS treatment. It was hypothesized that a cooling vest will not meet the established cooling criteria for EHS treatment. Materials and Methods: Fourteen recreationally active participants (mean ± SD; male, n = 8; age, 25 ± 4 years; body mass, 86.7 ± 10.5 kg; body fat, 16.5 ± 5.2%; body surface area, 2.06 ± 0.15 m2. female, n = 6; 22 ± 2 years; 61.3 ± 6.7 kg; 22.8 ± 4.4%; 1.66 ± 0.11 m2) exercised on a motorized treadmill in a hot climatic chamber (ambient temperature 39.8 ± 1.9 °C, relative humidity 37.4 ± 6.9%) until they reached rectal temperature (TRE) >39 °C (mean TRE, 39.59 ± 0.38 °C). Following exercise, participants were cooled using either a cooling vest (VEST) or passive rest (PASS) in the climatic chamber until TRE reached 38.25 °C. Trials were assigned using randomized, counter-balanced crossover design. Results: There was a main effect of cooling modality type on cooling rates (F[1, 24] = 10.46, p < 0.01, η2p = 0.30), with a greater cooling rate observed in VEST (0.06 ± 0.02 °C·min−1) than PASS (0.04 ± 0.01 °C·min−1) (MD = 0.02, 95% CI = [0.01, 0.03]). There were also main effects of sex (F[1, 24] = 5.97, p = 0.02, η2p = 0.20) and cooling modality type (F[1, 24] = 4.38, p = 0.047, η2p = 0.15) on cooling duration, with a faster cooling time in female (26.9 min) than male participants (42.2 min) (MD = 15.3 min, 95% CI = [2.4, 28.2]) and faster cooling duration in VEST than PASS (MD = 13.1 min, 95% CI = [0.2, 26.0]). An increased body mass was associated with a decreased cooling rate in PASS (r = −0.580, p = 0.03); however, this association was not significant in vest (r = −0.252, p = 0.39). Conclusions: Although VEST exhibited a greater cooling capacity than PASS, VEST was far below an acceptable cooling rate for EHS treatment. VEST should not replace immediate whole-body cold-water immersion when EHS is suspected.


Sign in / Sign up

Export Citation Format

Share Document