scholarly journals Infeksi Alami Pepper Yellow Leaf Curl Virus dan Sweet potato virus C Pada Ubi Jalar di Malang, Jawa Timur

2019 ◽  
Vol 15 (6) ◽  
pp. 248-254
Author(s):  
Tri Asmira Damayanti ◽  
Anastasya Hondo ◽  
Yusmani Prayogo

Gejala tulang daun kuning (vein yellowing) dan malformasi daun yang diduga disebabkan oleh virus ditemukan pada ubi jalar IR Melati di daerah Kendalpayak, Malang, Jawa Timur. Amplifikasi DNA/cDNA menggunakan primer universal Begomovirus, Potyvirus, dan Cucumovirus menunjukkan positif teramplifikasi DNA dengan primer universal Begomovirus, dan Potyvirus, namun negatif dengan primer universal Cucumovirus. Berdasarkan runutan sikuen nukleotida, gejala tulang daun kuning dan malformasi daun disebabkan oleh infeksi ganda Pepper yellow leaf curl virus (PYLCV) dan Sweet potato virus C (SPVC). Analisis identitas DNA dengan perangkat lunak BioEdit menunjukkan homologi paling tinggi sebesar 98.5% terhadap PYLCV isolat cabai dari Bangli Bali, dan sebesar 98% terhadap SPVC dengan isolat ubi jalar asal Jepang dan Amerika Serikat. Laporan ini merupakan temuan baru infeksi alami PYLCV dan SPVC pada ubi jalar di Indonesia.

Plant Disease ◽  
2018 ◽  
Vol 102 (3) ◽  
pp. 589-599 ◽  
Author(s):  
Solomon Maina ◽  
Martin J. Barbetti ◽  
Owain R. Edwards ◽  
Luis de Almeida ◽  
Abel Ximenes ◽  
...  

Sweet potato feathery mottle virus (SPFMV) and Sweet potato virus C (SPVC) isolates from sweetpotato were studied to examine genetic connectivity between viruses from Australia and Southeast Asia. East Timorese samples from sweetpotato were sent to Australia on FTA cards. Shoot and tuberous root samples were collected in Australia and planted in the glasshouse, and scions were graft inoculated to Ipomoea setosa plants. Symptoms in infected sweetpotato and I. setosa plants were recorded. RNA extracts from FTA cards and I. setosa leaf samples were subjected to high-throughput sequencing (HTS). Complete genomic sequences (CS) of SPFMV and SPVC (11 each) were obtained by HTS, and coat protein (CP) genes from them were compared with others from GenBank. SPFMV sequences clustered into two major phylogroups (A and B = RC) and two minor phylogroups (EA[I] and O[II]) within A; East Timorese sequences were in EA(I) and O(II), whereas Australian sequences were in O(II) and B(RC). With SPVC, CP trees provided sufficient diversity to distinguish major phylogroups A and B and six minor phylogroups within A (I to VI); East Timorese sequences were in minor phylogroup I, whereas Australian sequences were in minor phylogroups II and VI and in major phylogroup B. With SPFMV, Aus13B grouped with East Timorese sequence TM64B within minor phylogroup O, giving nucleotide sequence identities of 97.4% (CS) and 98.3% (CP). However, the closest match with an Australian sequence was the 97.6% (CS) and 98.7% (CP) nucleotide identity between Aus13B and an Argentinian sequence. With SPVC, closest nucleotide identity matches between Australian and East Timorese sequences were 94.1% with Aus6a and TM68A (CS) and 96.3% with Aus55-4C and TM64A (CP); however neither pair member belonged to the same minor phylogroup. Also, the closest Australian match was 99.1% (CP) nucleotide identity between Aus4C and New Zealand isolate NZ4-4. These first complete genome sequences of SPFMV and SPVC from sweetpotato plantings in the Australian continent and neighboring Southeast Asia suggest at least two (SPFMV) and three (SPVC) separate introductions to Australia since agriculture commenced more than two centuries ago. These findings have major implications for both healthy stock programs and biosecurity management in relation to pathogen entry into Australia and elsewhere.


2015 ◽  
Vol 59 (02) ◽  
pp. 185-188 ◽  
Author(s):  
CARLA M.R. VARANDA ◽  
SUSANA J. SANTOS ◽  
MÔNICA D.M. OLIVEIRA ◽  
MARIA IVONE E. CLARA ◽  
MARIA ROSÁRIO F. FÉLIX

Plant Disease ◽  
2018 ◽  
Vol 102 (10) ◽  
pp. 1899-1914 ◽  
Author(s):  
Solomon Maina ◽  
Martin J. Barbetti ◽  
Darren P. Martin ◽  
Owain R. Edwards ◽  
Roger A. C. Jones

Sweet potato feathery mottle virus (SPFMV) and Sweet potato virus C (SPVC) isolates were obtained from sweetpotato shoot or tuberous root samples from three widely separated locations in Australia’s tropical north (Cairns, Darwin, and Kununurra). The samples were planted in the glasshouse and scions obtained from the plants were graft inoculated to Ipomoea setosa plants. Virus symptoms were recorded in the field in Kununurra and in glasshouse-grown sweetpotato and I. setosa plants. RNA extracts from I. setosa leaf samples were subjected to high-throughput sequencing. New complete SPFMV (n = 17) and SPVC (n = 6) genomic sequences were obtained and compared with 47 sequences from GenBank. Phylogenetic analysis revealed that the 17 new SPFMV genomes all fitted within either major phylogroup A, minor phylogroup II, formerly O; or major phylogroup B, formerly RC. Major phylogroup A’s minor phylogroup I, formerly EA, only appeared when recombinants were included. Numbers of SPVC genomes were insufficient to subdivide it into phylogroups. Within phylogroup A’s minor phylogroup II, the closest genetic match between an Australian and a Southeast Asian SPFMV sequence was the 97.4% nucleotide identity with an East Timorese sequence. Recombination analysis of the 43 SPFMV and 27 SPVC sequences revealed evidence of 44 recombination events, 16 of which involved interspecies sequence transfers between SPFMV and SPVC and 28 intraspecies transfers, 17 in SPFMV and 11 in SPVC. Within SPFMV, 11 intraspecies recombination events were between different major phylogroups and 6 were between members of the same major phylogroup. Phylogenetic analysis accounting for the detected recombination events within SPFMV sequences yielded evidence of minor phylogroup II and phylogroup B but the five sequences from minor phylogroup I were distributed in two separate groups among the sequences of minor phylogroup II. For the SPVC sequences, phylogenetic analysis accounting for the detected recombination events revealed three major phylogroups (A, B, and C), with major phylogroup A being further subdivided into two minor phylogroups. Within the recombinant genomes of both viruses, their PI, NIa-Pro, NIb, and CP genes contained the highest numbers of recombination breakpoints. The high frequency of interspecies and interphylogroup recombination events reflects the widespread occurrence of mixed SPVC and SPFMV infections within sweetpotato plants. The prevalence of infection in northern Australian sweetpotato samples reinforces the need for improved virus testing in healthy sweetpotato stock programs. Furthermore, evidence of genetic connectivity between Australian and East Timorese SPFMV genomes emphasizes the need for improved biosecurity measures to protect against potentially damaging international virus movements.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Yongjiang Wang ◽  
Yanhong Qin ◽  
Shuang Wang ◽  
Desheng Zhang ◽  
Yuting Tian ◽  
...  

AbstractChina is the world’s largest producer of sweet potato (Ipomoea batatas (L.) Lam.). Considering that there are numerous sweet potato-producing regions in China and sweet potato is a vegetatively propagated crop, the genetic diversity of sweet potato viruses could be high in the country. However, studies on species and genetic variabilities of sweet potato viruses in China are limited, making it difficult to prevent and control viral diseases in this crop. During 2014–2019, sweet potato samples with viral disease-like symptoms were randomly collected from sweet potato fields in 25 provinces in China. Twenty-one virus species, including 12 DNA and 9 RNA viruses, were identified in the samples using next-generation sequencing, polymerase chain reaction and rolling-circle amplification methods. One novel sweepovirus species, Sweet potato leaf curl Hubei virus (SPLCHbV), was identified. Two species, Sweet potato collusive virus and Tobacco mosaic virus, were identified for the first time in sweet potato in China. Full-length or nearly full-length genomic sequences of 111 isolates belonging to 18 viral species were obtained. Genome sequence comparisons of potyvirus isolates obtained in this study indicate that the genome of sweet potato virus 2 is highly conserved, whereas the other four potyviruses, sweet potato feathery mottle virus, sweet potato virus G, sweet potato latent virus and sweet potato virus C, exhibited a high genetic variability. The similarities among the 40 sweepovirus genomic sequences obtained from eight sweepovirus species are 67.0–99.8%. The eight sweepoviruses include 14 strains, of which 4 novel strains were identified from SPLCHbV and 1 from sweet potato leaf curl Guangxi virus. Five sweet potato chlorotic stunt virus (SPCSV) isolates obtained belong to the WA strain, and the genome sequences of SPCSV are highly conserved. Together, this study for the first time comprehensively reports the variability of sweet potato viruses in China.


EPPO Bulletin ◽  
2002 ◽  
Vol 32 (1) ◽  
pp. 31-35
Author(s):  
A. F. Arsenio ◽  
E. Neto ◽  
N. Ramos ◽  
S. Mangerico ◽  
E. Fortunato ◽  
...  

2020 ◽  
pp. 30-34
Author(s):  
С.Ф. Гавриш ◽  
Т.А. Редичкина ◽  
А.В. Буц ◽  
Г.М. Артемьева

Дана информация об изучении коллекции гибридов F1томата (Solanum lycopersicum L.) зарубежной селекции различных фирм-оригинаторов, рекомендованных производителями семян как толерантные к вирусу желтой курчавости листьев томата. Все гибриды обладали комплексом хозяйственно ценных признаков и набором генов устойчивости к основным заболеваниям томата, в том числе к новому для юга России опасному патогену с максимальным потенциальным риском – вирусу желтой курчавости листьев томата (Tomato yellow leaf curl virus — TYLCV). Исследования проведены в 2017-2018 годах в лаборатории пасленовых культур ООО «НИИСОК» и в лаборатории молекулярной диагностики растений ООО «Семеновод». Всего было протестировано 34 гибрида F1 томата. Гибриды оценивали по совокупности хозяйственно ценных признаков, также проводили молекулярно-генетический анализ на наличие и аллельное состояние основных генов устойчивости: к вирусу табачной мозаики (Tm2а), фузариозному увяданию (I2), вертициллезному увяданию (Ve), к кладоспориозу (Cf9), нематодам (Mi1.2), вирусу бронзовости томата (Sw5), вирусу желтой курчавости листьев томата (Ty3a). Установлено, что все проанализированные гибриды томата с заявленной оригинаторами семян устойчивостью к вирусу желтой курчавости листьев были гетерозиготны по гену Ty3a. На основании проведенных исследований и с учетом требований рынка разработаны модели гибридов F1 томата юга России. Перспективный гибрид томата должен обладать индетерминантным типом роста с укороченными междоузлиями (4,5-5 см) а также хорошей облиственностью. Плоды томата должны быть с красной равномерной окраской без зеленого пятна у плодоножки, с плоскоокруглой или округлой формой плода и со средней массой 220-270 г. Для повышения транспортабельности томатов необходимо, чтобы плоды отличались высокой прочностью и характеризовались хорошей лежкостью. Урожайность гибрида томата должна быть более 30 кг/м2, а товарность - не менее 85%. Гибрид томата должен обладать следующим набором генов устойчивости в гетерозиготном состоянии: Ty3a, Mi1.2, Cf-9, а также в гомозиготном состоянии: Tm2a, I2, Ve. The article provides information on the study of the collection of F1 tomato hybrids (Solanum lycopersicumL.) of foreign breeding from various firms-originators recommended for cultivation in regions with a strong spread of tomato yellow leaf curl virus. All hybrids had a complex of economically valuable traits and a set of genes for resistance to the main diseases of tomato, including a new dangerous pathogen for the South of Russia with a maximum potential risk — the tomato yellow leaf curl virus (TYLCV). The studies were carried out in 2017-2018 in the Solanaceae Laboratory of LLC NIISOK and in the Molecular Diagnostics Laboratory of Plants of LLC Semenovod. A total of 34 F1 tomato hybrids were tested. The hybrids were assessed by a set of economically valuable traits. Molecular genetic analysis was also carried out for the presence and allelic state of the main resistance genes: Tomato mosaic virus (Tm2a), Fusarium wilt (I2), Werticillium wilt (Ve), Cladosporium fulvum (Cf9), Nematodes (Mi1.2), Tomato spotted wilt virus (Sw5), Tomato yellow leaf curl virus (Ty3a). It was found that all the analyzed tomato hybrids with the declared by seed originators resistance to yellow leaf curl virus were heterozygous for the Ty3a gene. Based on the conducted research and taking into account the market requirements, models of F1 tomato hybrids for protected ground for the South of Russia have been developed. A promising tomato hybrid should have an indeterminate growth type with shortened internodes (4.5-5 cm) and good foliage. Tomato fruits should have a uniform red color without green shoulders, with a flat-round or round shape of the fruit and with an average weight of 220-270 g. To increase the transportability of tomatoes, it is necessary that the fruits are highly firm and characterized by good shelf life. The yield of tomato hybrid should be more than 30 kg/m2, and marketability should be at least 85%. The tomato hybrid should have the following set of resistance genes in a heterozygous state: Ty3a, Mi1.2, Cf-9, and also in a homozygous state: Tm2a, I2, Ve.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 139
Author(s):  
Sharon A. Andreason ◽  
Omotola G. Olaniyi ◽  
Andrea C. Gilliard ◽  
Phillip A. Wadl ◽  
Livy H. Williams ◽  
...  

Sweet potato leaf curl virus (SPLCV) threatens global sweet potato production. SPLCV is transmitted by Bemisia tabaci or via infected vegetative planting materials; however, SPLCV was suggested to be seed transmissible, which is a characteristic that is disputed for geminiviruses. The objective of this study was to revisit the validity of seed transmission of SPLCV in sweet potato. Using large-scale grow-out of sweet potato seedlings from SPLCV-contaminated seeds over 4 consecutive years, approximately 23,034 sweet potato seedlings of 118 genotype entries were evaluated. All seedlings germinating in a greenhouse under insect-proof conditions or in a growth chamber were free of SPLCV; however, a few seedlings grown in an open bench greenhouse lacking insect exclusion tested positive for SPLCV. Inspection of these seedlings revealed that B. tabaci had infiltrated the greenhouse. Therefore, transmission experiments were conducted using B. tabaci MEAM1, demonstrating successful vector transmission of SPLCV to sweet potato. Additionally, tests on contaminated seed coats and germinating cotyledons demonstrated that SPLCV contaminated a high percentage of seed coats collected from infected maternal plants, but SPLCV was never detected in emerging cotyledons. Based on the results of grow-out experiments, seed coat and cotyledon tests, and vector transmission experiments, we conclude that SPLCV is not seed transmitted in sweet potato.


Sign in / Sign up

Export Citation Format

Share Document