scholarly journals Membraneless Plant Microbial Fuel Cell using Water Hyacinth (Eichhornia crassipes) for Green Energy Generation and Biomass Production

2020 ◽  
Vol 10 (1) ◽  
pp. 71-78
Author(s):  
Ika Dyah Widharyanti ◽  
Muhammad Andiri Hendrawan ◽  
Marcelinus Christwardana

The plant microbial fuel cell (PMFC) is a technology built to produce renewable and sustainable electricityin order to meet the increasing global demand. This study demonstrates the potential application of PMFC in swamps dominated by water hyacinth to produce biological energy and plant biomass.In this research, the plant was integrated into a microbial fuel cell that adopts various types of anode materials such as carbon felt, iron and zinc, with a varying distance of 10 and 20 cm between the anode and cathode. Organic compounds emerging from the photosynthesis process were deposited by plant roots, which were then oxidized by bacteria in the mud media. The result showed that the developed PMFC produced a voltage and current density of 244.8 mV and 185.4 mA/m2, respectively, for 30 days, with a maximum power of 100.2 mW/m2 in the cells using zinc as anode material with an electrode spacing of 10 cm. Furthermore, the pH value on PMFC with a longer electrode was higher than the shorter distance due to the protons' inability to move from anode to cathode against the force of gravity. In conclusion, PMFC which utilizes water hyacinth has a good performance in converting chemical energy from the substrate into electrical energy, and has the potential to be developed in underdeveloped areas.

Author(s):  
Teng Howe Cheng ◽  
Kok Boon Ching ◽  
Chessda Uttraphan ◽  
Yee Mei Heong

Plant microbial fuel cell (P-MFC) is an electrochemical reactor that converts organic compounds to electrical energy through the catalytic reaction from electrochemically active bacteria (EAB). However, there is no sign of an attempt in developing the functional model in predicting the energy conversion and utilization of P-MFC. In this study, an analytic model is proposed to show the whole production process of the organic compound to electrical energy generation. <em>Pandanus Amaryllifolius</em> plant was used as sources of photosynthate, where biomass product from rhizodeposition, acetate was produced, and soil bacteria as the microbial culture, and air as the input to the cathode chamber. The proposed analytical model is able to predict the output of the P-MFC using the parameters from the experiment. The generated data from the model was then compared with the monitored data from the <em>Pandanus Amaryllifolius </em>P-MFC. The results show the electrical power output has a high similarity pattern with the bacterial growth curve model and able to achieve the coulombic efficiency of 95.32%.


2017 ◽  
Vol 27 (4) ◽  
Author(s):  
Shaimaa Nghamish Mizil

In this study we tried to convert the chemical energy to electrical energy by using microbial fuel cell (MFC) consist of two chambers (anode and cathode) in presence of bacteria (Escherichia coli, pseudomonas aeroginosa ) and yeast (Saccharomyces cervesia) in the anode chamber to generate electrons. The system was started with glucose concentration 5gm/l in different pH value from (5-8). From the results we get the great generation of electricity with S. cervesia at pH 5 and the maximum voltage was 833mv. In case of bacteria that used in our experiment, the suitable pH for generation the electricity was (7).


2020 ◽  
Vol 45 (10) ◽  
pp. 5911-5927 ◽  
Author(s):  
Fatma Allam ◽  
Mohamed Elnouby ◽  
K.M. El-Khatib ◽  
Dalia E. El-Badan ◽  
Soraya A. Sabry

Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2312
Author(s):  
Jeongjin Yeo ◽  
Taeyoung Kim ◽  
Jae Jang ◽  
Yoonseok Yang

Power management systems (PMSs) are essential for the practical use of microbial fuel cell (MFC) technology, as they replace the unstable stacking of MFCs with step-up voltage conversion. Maximum-power extraction technology could improve the power output of MFCs; however, owing to the power consumption of the PMS operation, the maximum-power extraction point cannot deliver maximum power to the application load. This study proposes a practical power extraction for single MFCs, which reserves more electrical energy for an application load than conventional maximum power-point tracking (MPPT). When experimentally validated on a real MFC, the proposed method delivered higher output power during a longer PMS operation time than MPPT. The maximum power delivery enables more effective power conditioning of various micro-energy harvesting systems.


2017 ◽  
Vol 79 (5-2) ◽  
Author(s):  
Zul Hasrizal Bohari ◽  
Nur Asyhikin Azhari ◽  
Nuraina Nasuha Ab Rahman ◽  
Mohamad Faizal Baharom ◽  
Mohd Hafiz Jali ◽  
...  

Energy trending lately shown the need of new possible renewable energy. This paper studies about the capability and capacity generating of electricity by using Bio-electricity-Microbial Fuel Cell (Bio-MFC). Bio-MFC is the device that converts chemical energy to electrical energy by using microbes that exist in the sewage water. The energy contained in organic matter can be converted into useful electrical power. MFC can be operated by microbes that transfer electrons from anode to cathode for generating electricity. There are two major goals in this study. The first goal is to determine the performance characteristics of MFCs in this application. Specifically we investigate the relationship between the percentages of organic matter in a sample results in higher electricity production of MFCs power by that sample. As a result, the sewage (wastewater) chosen in the second series experiment because the sewage (wastewater) also produced the highest percentage of organic matter which is around 10%. Due to these, the higher percentage of organic matter corresponds to higher electricity production. The second goal is to determine the condition under which MFC work most efficiently to generating electricity. After get the best result of the combination for the electrode, which is combination of zinc and copper (900mV),the third series of experiments was coducted, that show the independent variable was in the ambient temperature. The reasons of these observations will be explained throughout the paper. The study proved that the electricity production of MFC can be increased by selecting the right condition of sample type, temperature and type of electrode. 


Author(s):  
P. Chiranjeevi ◽  
Dileep Kumar Yeruva ◽  
A. Kiran Kumar ◽  
S. Venkata Mohan ◽  
Sunita Varjani

2013 ◽  
pp. 22-39
Author(s):  
Daniel Leslie Tan ◽  
Julie Tan ◽  
Mark Anthony Atanacio ◽  
Ruel Delantar

Energy from edible and inedible root crop roots and tubers using galvanic cell and processing waste waters through microbial fuel cell (MFC) technology was harnessed. Electrolyte in the roots and tubers was tapped for galvanic cell and the microorganisms from waste waters act as catalyst in MFC. In galvanic cell, the optimized responses of badiang, cassava and sweetpotato were greatly affected by the surface area and distance between anode and cathode electrodes. An increase of nata-de-coco membrane size in MFC increased the voltage and current by 4.94 and 11.71 times, respectively. Increasing the width of anode also enhanced the responses. Different types of microorganisms were isolated from the biofilm anode of MFC. Their growth and proliferation which corresponded to the generation of electricity were also demonstrated in this study. A total of 54 bacterial isolates were collected from the biofilm at the anode of single-chamber MFC (SCMFC). The generated electricity observed using light emitting diodes (LED) showed potential both for galvanic and microbial fuel cell. The generated regression models are reliable tools in predicting desired outputs for future applications. These promising results demonstrated basic information on the electrical energy recovery from rootcrop waste waters and roots/tubers.


Sign in / Sign up

Export Citation Format

Share Document