Bioconversion of Industrial Cassava Solid Waste (Onggok) to Bioethanol Using a Saccharification and Fermentation process

2021 ◽  
Vol 11 (2) ◽  
pp. 357-363
Author(s):  
Soeprijanto Soeprijanto ◽  
Lailatul Qomariyah ◽  
Afan Hamzah ◽  
Saidah Altway

Cassava solid waste (Onggok) is a by-product of the starch industry containing a lot of fiber, especially cellulose and hemicellulose. It has the potential to be converted to bioethanol. This work aimed to evaluate the effect of feedstocks ratio for the optimal bioethanol production via enzymatic and acidic hydrolysis process in a batch fermentation process. The effect of alpha-amylase and glucoamylase activities was studied. The sulfuric acid concentrations in the hydrolysis process in converting cassava into reducing sugar were also investigated. The reducing sugar was then fermented to produce ethanol. Enzymatic and chemical hydrolysis was carried out with the ratio of onggok(g)/water(L), 50/1, 75/1, and 100/1 (w/v). In the enzymatic hydrolysis, 22.5, 45, and 67.5 KNU (Kilo Novo alpha-amylase Unit) for liquefaction; and 65, 130, and 195 GAU (Glucoamylase Unit) for saccharification, respectively of enzymes were applied. The liquefaction was carried out at 90-100⁰C for 2 hours. The saccharification was executed at 65 ⁰C for 4 hours. Meanwhile, the acidic hydrolysis operating condition was at 90-100 ⁰C for 3 hours. The fermentation was performed at pH 4.5 for 3 days. Fourier Transform Infra-Red (FTIR) analysis was conducted to evaluate the hydrolysis process. The highest ethanol was yielded in the fermentation at 8.89% with the ratio of onggok to water 100:1, 67.5 KNU of alpha-amylase, and 195 GAU of glucoamylase. Ethanol was further purified utilizing fractional distillation. The final ethanol concentration was at 93-94%.

2015 ◽  
Vol 9 (1) ◽  
pp. 109-112
Author(s):  
Wenjing Huang ◽  
Yanjie Tong ◽  
Wangxiang Huang ◽  
Ke Wang ◽  
Qiming Chen ◽  
...  

To evaluate the influence of 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) on the ethanol fermentation process of Pichia pastoris GS115, this paper investigated the yeast growth, ethanol formation and the fermentable sugars consumption during the ethanol fermentation process of Pichia pastoris GS115 at different [Bmim]Cl concentrations in the medium. The results indicated that the [Bmim]Cl had no influence on the ethanol fermentation process at its concentration less than 0.0001 g.L-1. The [Bmim]Cl inhibited the yeast growth and had a negative effect on ethanol formation at its concentration higher than 0.0001 g.L-1. The final biomass and ethanol concentration, and the overall ethanol yield from the fermentable sugars all decreased with its concentration increasing. The yeast growth was very slow and nearly no ethanol formed when its concentration reached 5 g.L-1. Compared to Saccharomyces cerevisiae, the growth of Pichia pastoris GS115 was more sensitive to the [Bmim]Cl, and its ethanol fermentation had lower final ethanol concentration and overall ethanol yield from fermentable sugars at the same [Bmim]Cl concentration. This work provides useful information on selecting suitable strains for ethanol fermentation containing the [Bmim]Cl in the medium.


Author(s):  
Zoltán Kállai ◽  
Zsuzsa Antunovics ◽  
Gyula Oros

The dynamics of ethanol production of wine yeasts were examined in model experiments as well as in the winery. The ethanol concentration in young wines fermented by local strains of Saccharomyces cerevisiae, S. uvarumor Starmerella bacillaris (21, 2 and 2, respectively) did not vary considerably (c.v. 1.9 %). All of them produced significantly higher amount of ethanol than the type strain [ATCC 26108] of S. cerevisiae. However, their performance during the fermentation process diverged significantly. Thus the lag phase varied between 33 and 123 hours, while the time requested to produce half of the final ethanol concentration varied between 67 and 294 hours.


2019 ◽  
Vol 964 ◽  
pp. 145-150
Author(s):  
Anastasia Sandra Dewi ◽  
Richie Andyllo Stevanus ◽  
Maria Amelia Sandra ◽  
Dennis Farina Nury ◽  
Lily Pudjiastuti ◽  
...  

In this study the effect of mixed culture of Zymomonasmobilis and Pichia stipitis to produce bioethanol from Solid Waste Arenga pinnata (SWAP) was investigated. The fermentation liquid substrate was resulted from an integrated process of pretreatment and enzymatic hydrolysis. Combination of diluted acid and ethanol organosolv pretreatment was used to increase the SWAP lignin removal. Raw pretreatment was used to decrease the SWAP particle size to 200 mesh. Acid pretreatment was done using 5% (v/v) diluted sulfate acid. Acid pretreated SWAP was treated for 65 min with organosolv pretreatment. Enzymatic hydrolysis by a combination of cellulase and xylanase was done for 48 h to convert cellulose into reducing sugar. The surfactants (Tween 80) addition was done to increase the sugar yield of the hydrolysis process. Fermentation variable consist of single culture of Z. mobilis as the control and mixed culture of Z. mobilis and P. stipitis, the microorganisms used to convert glucose and xylose into ethanol. The number of inoculum used in this experiment was more than 1.4 billion cells and the duration of fermentation process was 72 h. The delignification process decreased 95.43% lignin in SWAP. X-ray Diffraction (XRD) analysis assay showed an increase of crystallinity index of SWAP with pretreatment combination to 37.87%. Enzymatic hydrolysis by a combination of cellulase and xylanase with the addition of Tween 80 produced 9.16 gr glucose/L reducing sugar concentration. The highest ethanol resulted by fermentation process using mixed culture of Z. mobilis and P. stipitis with 0.33% (v/v) ethanol concentration and 0.57 (g ethanol/g reducing sugar) ethanol yield. Fermentation process using single culture Z. mobilis resulted 0.28% (v/v) ethanol concentration, and 0.48 (g ethanol/g reducing sugar) ethanol yield. The mixed culture fermentation with Z. mobilis and P. stipitis resulted ethanol yield 19 % higher than the single culture fermentation using Z. mobilis.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2432
Author(s):  
Li Chen ◽  
Lu-Lu Zhang ◽  
Jing-Nan Ren ◽  
Xiao Li ◽  
Gang Fan ◽  
...  

Flavors and fragrances have high commercial value in the food, cosmetic, chemical and pharmaceutical industries. It is interesting to investigate the isolation and characterization of new microorganisms with the ability to produce flavor compounds. In this study, a new strain of Klebsiella sp. O852 (accession number CCTCC M2020509) was isolated from decayed navel orange (Citrus sinensis (L.) Osbeck), which was proved to be capable of converting limonene to trans-dihydrocarvone. Besides, the optimization of various reaction parameters to enhance the trans-dihydrocarvone production in shake flask was performed for Klebsiella sp. O852. The results showed that the yield of trans-dihydrocarvone reached up to 1 058 mg/L when Klebsiella sp. O852 was incubated using LB-M medium for 4 h at 36 °C and 150 rpm, and the biotransformation process was monitored for 36 h after adding 1680 mg/L limonene/ethanol (final ethanol concentration of 0.8% (v/v)). The content of trans-dihydrocarvone increased 16 times after optimization. This study provided a basis and reference for producing trans-dihydrocarvone by biotransformation.


2021 ◽  
Author(s):  
Indira Pérez Bermúdez ◽  
Arletis Cruz Llerena ◽  
Keyla Tortoló Cabañas ◽  
Manuel Díaz de los Ríos ◽  
Miguel Ángel Peña ◽  
...  

Abstract Purpuse: Fodder yeast is obtained in an aerobic fermentation process where foaming is a major problem to be solved. In this article, the antifoam property of crude and purified filter cake oil is evaluated in order to use this residual as an alternative to replace the import of commercial antifoam agents and to reduce the production costs of fodder yeastMethod: Knock down test and the comparisons with two commercial antifoam agents were done. Blackstrap molasses medium at 20 and 40 g/L of total reducing sugar was used. All products were studied in their pure form and commercial ones also in dilutions 1:2 and 1:5 v/v. Hansen's solubility parameters (HSPs) to analyze the affinity of each defoamer for yeast were determined.Results: It was obtained the crude and purified filter cake oil showed similar behavior to commercial defoamers with an immediate antifoam effect, removing between 40 and 60% of the initial foam at both sugar concentrations in the first 5 minutes. The regression model showed purified filter cake oil has the greatest knockdown effect (Ca = 55.85 and 74.32) and with greater foam suppression stability the commercial defoamer Quimifoam Máster (Cb = -0.69 and -1.38). Ra values obtained in HSPs test, indicated the affinity of defoamers to the medium. Conclusion: Purified filter cake oil is an effective product for its use as an antifoam with the best knock down effect for both concentrations of sugars in the medium. The determination of HSPs corroborates the effectiveness of this product to suppress foam.


2018 ◽  
Vol 18 (3) ◽  
pp. 270-276 ◽  
Author(s):  
Muhammad Irfan Said ◽  
Effendi Abustam ◽  
Wempie Pakiding ◽  
Muhammad Zain Mide ◽  
Midiawati Sukma

2016 ◽  
Vol 83 (1) ◽  
Author(s):  
Vera BARLIANTI ◽  
Deliana DAHNUM ◽  
. MURYANTO ◽  
Eka TRIWAHYUNI ◽  
Yosi ARISTIAWAN ◽  
...  

Abstrak Sebagai salah satu Negara penghasil minyak kelapa sawit mentah (CPO), Indonesia juga menghasilkan tandan kosong kelapa sawit (TKKS) dalam jumlah besar. TKKS terdiri dari-tiga-komponen utama, yaitu selulosa, hemiselulosa, dan lignin. Pengolahan awal TKKS secara alkalindi ikuti dengan hidrolisis TKKS secara enzimatik menggunakan kombinasi enzim selulase dan β-glukosidase akan menghasilkan gula-gula yang mudah difermentasi.  Penelitian ini bertujuan untuk mempelajari pengaruh konsentrasi substrat, kon-sentrasi enzim, dan suhu selama proses hidrolisis berlangsung.  Hasil yang diperoleh menunjukkan bahwa konsentrasi gula maksimum (194,78 g/L) dicapai pada konsentrasi TKKS 20% (b/v), konsentrasi campuran enzim yang terdiri dari selulase dan β-1,4 glukosidase sebesar 3,85% (v/v), dan suhu 50oC. Perbandingan antara selulase dan β-1,4 glukosidase adalah 5:1 dengan masing-masing aktivitas enzim sebesar 144.5 FPU/mL dan 63 FPU/mL. Hasil penelitian juga menunjukkan bahwa model kinetika yang sesuai untuk proses hidrolisis TKKS secara enzimatik adalah model kinetika Shen dan Agblevor dengan reakside aktivasi enzim orde satu.  Hasil ini mendukung studi kelayakan ekonomi dalam pemanfaatan TKKS untuk produksi bioetanol.AbstractAs one of the crude palm oil producers, Indonesia also produces empty fruit bunches (EFB)in large quantities. The oil palm EFB consist of cellulose, hemicellulose and lignin. Alkaline pretreatment of EFB, followed by enzymatic hydro-lysis of cellulose using combination of cellulase and β-glucosidase enzymes produce fermentable sugars. This paper reported the effects of substrate loading, enzyme concentration, and temperature of hydrolysis process on reducing sugar production. The  maximum  sugar  concentration (194.78 g/L) was produced at 50oC using 20% (w/v) EFB and 3.85% (v/v) mixed enzymes of cellulase and β-1,4 glucosidase in volume ratio of 5:1 (v/v), with enzyme activity of 144.5 FPU/mL and 63 FPU/mL, respectively. The results also showed that the suitable kinetic model for enzymatic hydrolysis process of oil palm EFB follow Shen and Agblevor model with first order of enzyme deactivation. These results support the economic feasibility study in utilization of EFB of oil palm for bioethanol production.    


2018 ◽  
pp. 52-58

Purificación Parcial y Caracterización de Alfa Amilasa de granos germinados de Chenopodium quinoa (Quinua) Partial Purification and Characterization of Alpha Amylase from germinated grains from Chenopopdium quinoa (Quinua) Melissa Bedón Gómez, Oscar Nolasco Cárdenas, Carlos Santa Cruz C. y Ana I. F. Gutiérrez Román Universidad Nacional Federico Villarreal, Facultad de Ciencias Naturales y Matemática, Laboratorio de Bioquímica y Biología Molecular, Jr. Río Chepén S/N, El Agustino. Telefax: 362 - 3388 DOI: https://doi.org/10.33017/RevECIPeru2013.0007/ Resumen Las alfa amilasas son las enzimas más estudiadas e importantes en el campo biotecnológico e industrial; ya que han reemplazado por completo la hidrólisis química del almidón. Estas enzimas son imprescindibles en la elaboración de productos alimenticios, combustibles, medicamentos y detergentes con la finalidad de optimizar procesos y conservar el medio ambiente. La α-amilasa puede ser purificada de diferentes organismos como plantas, animales, hongos y bacterias; actualmente un gran número de α-amilasas bacterianas en especial del género Bacillus están disponibles comercialmente y son las más utilizadas en las industrias. Sin embargo, la producción de éstas no satisfacen los requerimientos industriales en el mundo; ya que, la demanda de esta enzima se ha incrementado en los últimos dos años y el empleo de α-amilasas bacterianas ha provocado alergias afectando al 15% de la población a nivel mundial. . En este estudio, como fuente de α-amilasa se emplearon semillas de Chenopodium quinoa (quinua) var hualhuas blanca durante el proceso de germinación; esta enzima fue parcialmente purificada por precipitación con sulfato de amonio obteniendo una actividad específica final de 35.60U/mg y un grado de purificación de 5 veces. La purificación fue confirmada por SDS-PAGE, encontrando un peso molecular de 44kDa. La actividad enzimática se evaluó mediante el método de Miller mostrando máxima actividad a pH 7 y a temperatura de 37ºC. La linealización de Lineweaver-Burk nos dio un Km de 16mg/mL y Vmax de 100µM de maltosa/min. Por lo tanto, esta caracterización reúne los pre-requisitos necesarios para la aplicación en la industria. Descriptores: Chenopodium quinoa, alfa amilasa, germinación, purificación parcial. Abstract The alpha amylases are the enzymes most studied and important in biotechnology and industry; because they have completely replaced the starch’s chemical hydrolysis. These enzymes are essential in the food production, medicines and detergents in order to optimize processes and conserve the environment. The α-amylase can be isolated from different organisms such as plants, animals, fungi and bacteria, now a large number of bacterial α-amylases especially from genus Bacillus are commercially available and they are the most used in industry. However, the production of these do not meet industry requirements in the world, because the demand for this enzyme has increased in the last two years and the use of bacterial α-amilase has caused allergies affecting the 15% of the global population. In this study, as a source of α-amylase used the seeds from Chenopodium quinoa (quinoa). Var. white hualhuas during the germination process, this enzyme was partially purified by ammonium sulfate precipitation to obtain a final specific activity of 35.60U/mg, and a grade of purification of 5 times. The purification was confirmed by SDS-PAGE, where the molecular weight was 44kDa. The enzyme activity was evaluated by Miller method showing maximum activity at pH 7 and 37ºC. The Lineweaver-Burk linearization shows a Km of 16mg/mL and Vmax of 100μM the maltose / min. Therefore, these characterizations meet the prerequisites need for industry. Keywords: Chenopodium quinoa; alpha amylase; germination; partial purification


2007 ◽  
Vol 7 (1 & 2) ◽  
pp. 141
Author(s):  
Sri Haryati

A solution to find the best alternative to minimize industry pollution is very necessary especially in pulp and paper manufacturing. One of the alternatives is using waste as feed that will be converted into chemical compound and fuel. Solid waste from pulp and paper manufacturing that contains lignocellulose which is a biomass has potency to be processed for chemical compounds, such as sugar solution (D-glucose), Furfural, and Acetone-Buthanol-Ethanol (ABE). The solid waste in this research is hydrolyzed generating D-glucose solution. The purpose of this research is to study the variables of α-cellulose conversion kinetics as the balancing factor between α-cellulose conversion and energy and mass consumptions. The value of energy and mass consumptions, along with temperature and acid concentration, can be minimized to get higher conversions. Two processes in this method are the preparation and the hydrolyses of α-cellulose by using delignified feed. The hydrolyses process occurs in the Oscillated Reactor Column. The highest conversion was about 50-55% at 10% of sulfic acid concentration.


2011 ◽  
Vol 365 ◽  
pp. 145-149
Author(s):  
Xun Men ◽  
Xiu Shan Yang ◽  
Shen Tian

Fermentation process for ethanol production from steam-exploded corn stover using toxin-tolerant yeast strains was carried out in order to reduce the water consumption and operation cost. The substrate from steam-exploded did not undergo a detoxification process by wash, and was directly hydrolyzed by enzymes. Two toxin-tolerant stains, Y1 and Y5, were tested to ferment the enzymatic hydrolysate slurry directly to ethanol. In the enzymatic hydrolysate slurry containing inhibitory compounds, the strain Y1 and Y5 could convert the sugar to ethanol with ethanol concentration of 47.0 g/L and 47.2 g/L corresponding to 95.9% and 96.4% of the theoretical maximum, respectively.


Sign in / Sign up

Export Citation Format

Share Document