Mathematical Model of the Thermal Performance of Double-Pass Solar Collector for Solar Energy Application in Sierra Leone

2021 ◽  
Vol 11 (2) ◽  
pp. 347-355
Author(s):  
Abu Bakarr Momodu Bangura ◽  
Ridho Hantoro ◽  
Ahmad Fudholi ◽  
Pierre Damien Uwitije

The primary aim of this study was to utilize thermal energy for drying applications on March 21 (day of the year, n = 80) for the climatic weather conditions of Freetown, Sierra Leone. We evaluated the heat absorption of a double-pass solar air collector based on its configuration and exterior input variables before it was designed and mounted at the location of interest. This study considered a steady-state heat transfer using the thermal network procedure for thermodynamic modeling of a double-pass solar collector developed for drying and heating purposes. A mathematical model defining the thermophysical collector properties and many heat transfer coefficients is formed and numerically solved for this purpose. Indeed, this helped us generate the hourly temperature of different heat collector components, which aided in the performance evaluation of the system. The impact of the fluid flowing inside the collector on the temperature of the exit air was analyzed. It was observed that a flow rate of 0.02 kg/s produced an output of 91.72°C. The system's thermal efficiency improves with increased flow rate at various solar radiation intensities. It was observed that the thermal efficiency of the collector increases from 29% to 67% at flow rates of 0.01–0.3 kg/s. Collector lengths of 1.4 and 2.4 m are observed to be economically viable. An increase in the flow rate caused an increase on the efficiency. The hourly outputs for the collector components were represented graphically, and the curve patterns were similar to those of previous studies.

2020 ◽  
Vol 13 (3) ◽  
pp. 206-221
Author(s):  
Vijayan Gopalsamy ◽  
Karunakaran Rajasekaran ◽  
Logesh Kamaraj ◽  
Siva Sivasaravanan ◽  
Metin Kok

Background: Aqueous-alumina nanofluid was prepared using magnetic stirrer and ultrasonication process. Then, the prepared nanofluid was subjected to flow through the unshielded receiver of the parabolic trough solar collector to investigate the performance of the nanofluid and the effects of the dimensionless parameter were determined. Methods: The experimental work has been divided into two sections. First, the nanofluid was prepared and tested for its morphology, dimensions, and sedimentation using X-Ray Diffraction and Raman shift method. Then, the nanofluids of various concentrations from 0 to 4.0% are used as heat transfer fluid in unshielded type collector. Finally, the effect of the dimensionless parameter on the performance was determined. Results: For the whole test period, depending upon the bulk mean temperature, the dimensionless parameters such as Re and Nu varied from 1098 to 4552 & 19.30 to 46.40 for air and 2150 to 7551 & 11.11 to 48.54 for nanofluid. The enhancement of thermal efficiency found for 0% and 4.0% nanoparticle concentrations was 32.84% for the mass flow rate of 0.02 kg/s and 13.26% for the mass flow rate of 0.06 kg/s. Conclusion: Re and Nu of air depend on air velocity and ambient temperature. Re increased with the mass flow rate and decreased with concentration. Heat loss occurred by convection mode of heat transfer. Heat transfer coefficient and global efficiency increased with increased mass flow rate and volume fraction. The thermal efficiency of both 0% and 4.0% concentrations became equal for increased mass flow rate. It has been proven that at high mass flow rates, the time available to absorb the heat energy from the receiver is insufficient.


2017 ◽  
Vol 139 (3) ◽  
Author(s):  
Afaq Jasim Mahmood

This study presents a new design for improving the convection heat transfer coefficients of double-pass solar air heater. Three cases were described by using a different number of transverse baffles (three, five, and seven) in the lower channel of the collectors; steel mesh sheets were also used to enlarge the heat transfer area. All collectors have a space of 25 mm between its glass covers and a 50 mm depth of air channel. Furthermore, this work examined the effect of air flow rate and baffles number on device's thermal efficiency and outlet temperature. The experimental results indicate raises in the thermal efficiency as the air flow rate goes from 0.011 kg/s to 0.038 kg/s. A maximum efficiency of 68% was obtained from the case of seven baffles at the air flow rate of 0.038 kg/s. Moreover, the difference between collector's inlet and outlet temperatures, ΔT, indicated an inverse relationship with air flow rate. Thus, the results show ΔT increases as the air flow rate reduced. The maximum temperature difference recorded was 54 °C, which achieved using seven baffled solar air heater at 0.011 kg/s air flow rate in the middle of the day. It has also been found that thermal efficiency of double-pass solar air heater is greater than single-pass solar air heater, using same air flow rate and number of baffles. Finally, the pressure drop associated with increasing the number of baffles and air flow rate was deliberated.


2020 ◽  
Vol 9 (1) ◽  
pp. 233-243 ◽  
Author(s):  
Nainaru Tarakaramu ◽  
P.V. Satya Narayana ◽  
Bhumarapu Venkateswarlu

AbstractThe present investigation deals with the steady three-dimensional flow and heat transfer of nanofluids due to stretching sheet in the presence of magnetic field and heat source. Three types of water based nanoparticles namely, copper (Cu), aluminium oxide (Al2O3), and titanium dioxide (TiO2) are considered in this study. The temperature dependent variable thermal conductivity and thermal radiation has been introduced in the energy equation. Using suitable similarity transformations the dimensional non-linear expressions are converted into dimensionless system and are then solved numerically by Runge-Kutta-Fehlberg scheme along with well-known shooting technique. The impact of various flow parameters on axial and transverse velocities, temperature, surface frictional coefficients and rate of heat transfer coefficients are visualized both in qualitative and quantitative manners in the vicinity of stretching sheet. The results reviled that the temperature and velocity of the fluid rise with increasing values of variable thermal conductivity parameter. Also, the temperature and normal velocity of the fluid in case of Cu-water nanoparticles is more than that of Al2O3- water nanofluid. On the other hand, the axial velocity of the fluid in case of Al2O3- water nanofluid is more than that of TiO2nanoparticles. In addition, the current outcomes are matched with the previously published consequences and initiate to be a good contract as a limiting sense.


2006 ◽  
Vol 128 (10) ◽  
pp. 1050-1059 ◽  
Author(s):  
Todd M. Bandhauer ◽  
Akhil Agarwal ◽  
Srinivas Garimella

A model for predicting heat transfer during condensation of refrigerant R134a in horizontal microchannels is presented. The thermal amplification technique is used to measure condensation heat transfer coefficients accurately over small increments of refrigerant quality across the vapor-liquid dome (0<x<1). A combination of a high flow rate closed loop primary coolant and a low flow rate open loop secondary coolant ensures the accurate measurement of the small heat duties in these microchannels and the deduction of condensation heat transfer coefficients from measured UA values. Measurements were conducted for three circular microchannels (0.506<Dh<1.524mm) over the mass flux range 150<G<750kg∕m2s. Results from previous work by the authors on condensation flow mechanisms in microchannel geometries were used to interpret the results based on the applicable flow regimes. The heat transfer model is based on the approach originally developed by Traviss, D. P., Rohsenow, W. M., and Baron, A. B., 1973, “Forced-Convection Condensation Inside Tubes: A Heat Transfer Equation For Condenser Design,” ASHRAE Trans., 79(1), pp. 157–165 and Moser, K. W., Webb, R. L., and Na, B., 1998, “A New Equivalent Reynolds Number Model for Condensation in Smooth Tubes,” ASME, J. Heat Transfer, 120(2), pp. 410–417. The multiple-flow-regime model of Garimella, S., Agarwal, A., and Killion, J. D., 2005, “Condensation Pressure Drop in Circular Microchannels,” Heat Transfer Eng., 26(3), pp. 1–8 for predicting condensation pressure drops in microchannels is used to predict the pertinent interfacial shear stresses required in this heat transfer model. The resulting heat transfer model predicts 86% of the data within ±20%.


2011 ◽  
Vol 8 (3-4) ◽  
pp. 309-321 ◽  
Author(s):  
S. K. Pandey ◽  
Dharmendra Tripathi

This model investigates particularly the impact of an integral and a non-integral number of waves on the swallowing of food stuff such as jelly, tomato puree, soup, concentrated fruits juices and honey transported peristaltically through the oesophagus. The fluid is considered as a Casson fluid. Emphasis is on the study of the dependence of local pressure distribution on space and time. Mechanical efficiency, reflux limit and trapping are also discussed. The effect of Casson fluid vis-à-vis Newtonian fluid is investigated analytically and numerically too. The result is physically interpreted as that the oesophagus makes more efforts to swallow fluids with higher concentration. It is observed that the pressure is uniformly distributed when an integral number of waves is there in the oesophagus; but it is non-uniform when a non-integral number of waves is present therein. It is further observed that as the plug flow region widens, the pressure difference increases, which indicates that the averaged flow rate will reduce for a Casson fluid. It is also concluded that Casson fluids are more prone to reflux.


Author(s):  
Xingyun Jia ◽  
Liguo Wang ◽  
Qun Zheng ◽  
Hai Zhang ◽  
Yuting Jiang

Performance of generic rim seal configurations, axial-clearance rim seal (ACS), radial-clearance rim seal (RCS), radial-axial clearance rim seal (RACS) are compared under realistic working conditions. Conjugate heat transfer analysis on rim seal is performed in this paper to understand the impact of ingestion on disc temperature. Results show that seal effectiveness and cooling effectiveness of RACS are the best when compared with ACS and RCS, the minimum mass flow rate for seal of RACS is 75% of that of RCS, and 34.6% of ACS. Authors compare the disc temperature distribution between different generic rim seal configurations where the RACS seems to be favorable in terms of low disc temperature. In addition, RACS has higher air-cooled aerodynamic efficiency, minimizing the mainstream performance penalty when compared with ACS and RCS. Corresponding to the respective minimum mass flow rate for seal, the air-cooled aerodynamic efficiency of RACS is 23.71% higher than that of ACS, and 12.79% higher than the RCS.


Vestnik MEI ◽  
2021 ◽  
pp. 19-26
Author(s):  
Valentin S. Shteling ◽  
◽  
Vladimir V. Ilyin ◽  
Aleksandr T. Komov ◽  
Petr P. Shcherbakov ◽  
...  

The effectiveness of stabilizing the surface temperature by a dispersed coolant flow is experimentally studied on a bench simulating energy intensive elements of thermonuclear installations A test section in which the maximum heat flux density can be obtained when being subjected to high-frequency heating was developed, manufactured, and assembled. The test section was heated using a VCh-60AV HF generator with a frequency of not lower than 30 kHz. A hydraulic nozzle with a conical insert was used as the dispersing device. Techniques for carrying out an experiment on studying a stationary heat transfer regime and for calculating thermophysical quantities were developed. The experimental data were obtained in the stationary heat transfer regime with the following range of coolant operating parameters: water pressure equal to 0.38 MPa, water mass flow rate equal to 5.35 ml/s, and induction heating power equal to 6--19 kW. Based on the data obtained, the removed heat flux density and the heat transfer coefficients were calculated for each stationary heat transfer regime. The dependences of the heat transfer coefficient on the removed heat flux density and of the removed heat flux density on the temperature difference have been obtained. High values of heat transfer coefficients and heat flux density at a relatively low coolant flow rate were achieved in the experiments.


Author(s):  
Sunil Mehendale

In HVACR equipment, internally enhanced round tube (microfin) designs such as axial, cross-grooved, helical, and herringbone are commonly used to enhance the boiling and condensing performance of evaporators, condensers, and heat pumps. Typically, such tubes are mechanically expanded by a mandrel into a fin pack to create an interference fit between the tube outside surface and the fin collar to minimize the thermal contact resistance between tube and fin. However, during this expansion process, the internal enhancements undergo varying amounts of deformation, which degrades the in-tube thermal performance. Extensive data on condensing heat transfer coefficients in microfin tubes have been reported in the open literature. However, researchers have seldom used expanded tubes to acquire and report such data. Hence, it is always questionable to use such pristine tube data for designing heat exchangers and HVACR systems. Furthermore, the HVACR industry has been experiencing steeply rising copper costs, and this trend is expected to continue in coming years. So, many equipment manufacturers and suppliers are actively converting tubes from copper to aluminum. However, because of appreciable differences between the material properties of aluminum and copper, as well as other manufacturing variables, such as mandrel dimensions, lubricant used, etc., tube expansion typically deforms aluminum fins more than copper fins. Based on an analysis of the surface area changes arising from tube expansion, and an assessment of the best extant in-tube condensation heat transfer correlations, this work proposes a method of estimating the impact of tube expansion on in-tube condensation heat transfer. The analysis leads to certain interesting and useful findings correlating fin geometry and in-tube condensation thermal resistance. This method can then be applied to more realistically design HVACR heat exchangers and systems.


Sign in / Sign up

Export Citation Format

Share Document