scholarly journals Comparative analysis between pyrolysis products of Spirulina platensis biomass and its residues

2019 ◽  
Vol 8 (2) ◽  
pp. 133 ◽  
Author(s):  
Siti Jamilatun ◽  
B. Budhijanto ◽  
R. Rochmadi ◽  
Avido Yuliestyan ◽  
H. Hadiyanto ◽  
...  

Today’s needs of energy are yet globally dominated by fossil energy sources, causing the depletion of non-renewable energy. Alternatively, a potential substitute is the energy of biomass. Spirulina platensis (SP) is a microalgae biomass which, if extracted, will produce solid waste called Spirulina platensis residue (SPR). This research explores the pyrolysis product, produced within the range of 300 – 600 ºC, from the pyrolysis of SP and SPR using fixed bed reactors. The influence of temperature on pyrolysis product’s yield and characteristics are investigated by using mass balance method and gas chromatography – mass spectrometry (GC-MS) technique, respectively. The results from mass balance method present an optimum pyrolysis temperature of 550 ºC to obtain the desired liquid product of bio-oil, presenting the percentage of 34.59 wt.% for SP and 33.44 wt.% for SPR case. Additionally, with the increasing temperature, the char yield decreases for about 30 wt.% and the yield of gas seems to sharp increase from 550 to 600 ºC. These tendencies are both applied for SP and SPR source pyrolysis product. Interestingly, the benefit use as fossil fuel substitute might be derived, thanks to high HHV at the bio-oil product (32.04 MJ/kg for SP and 25.70 MJ/kg for SPR) and also at the char product with of 18.85-26.12 MJ/kg for both cases. The additional benefit come from the high content of C in its char product (50.31 wt.% for SPR and 45.26 wt.% for SP) that might be able to be used as an adsorbent, soil softener or other uses in the pharmaceutical field. ©2019. CBIORE-IJRED. All rights reserved

Elkawnie ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 96
Author(s):  
Siti Jamilatun ◽  
Yeni Elisthatiana ◽  
Siti Nurhalizatul Aini ◽  
Ilham Mufandi ◽  
Arief Budiman

Abstract : Dependence on the use of fossil fuels in Indonesia is still quite high, especially crude oil; if no new energy reserves found, it will disrupt long-term energy availability. Biofuel is a renewable energy source derived from biomass, such as the type of microalgae spirulina platensis (SP). Solid residues from SP extraction still contained high levels of protein and carbohydrates. This solid residue can be processed by pyrolysis to produce bio-oil, water phase, charcoal, and gas. Bio-oil and gas products can use as fuel, charcoal can use for pharmaceutical needs, and the water phase as a chemical can use in food and health. The pyrolysis process carried out in a fixed-bed reactor with temperature ranging from 300-600°C. Heating was carried out by electricity through a nickel wire wrapped outside the reactor. Pyrolysis product in the form of gas condensed in the condenser, the condensate formed measured by weight. Char weight measured after the pyrolysis process completed. At the same time, non-condensable gas calculated by gravity from the initial weight difference of SPR minus liquid weight (bio-oil and water phase) and char. SPR samples were analyzed proximate and ultimate, while bio-oil products examined by the GC-MS method. The experimental results showed that the optimum pyrolysis temperature at 500ºC produced by 18.45% of bio-oil, 20% of the water phase, 32.02 of charcoal, and 29.54% of gas by weight. GC-MS results from bio-oil consisted of ketones, aliphatics, nitrogen, alcohol, acids, while PAHs, phenols, and aromatics not found.Abstrak : Ketergantungan penggunaan bahan bakar fosil di Indonesia masih cukup tinggi terutama minyak mentah, jika tidak ditemukan cadangan energi baru maka akan mengganggu ketersediaan energi jangka panjang. Biofuel adalah salah satu sumber energi terbarukan yang berasal dari biomassa seperti jenis mikroalga spirulina platensis (SP). Residu padat dari ekstraksi SP masih mengandung protein dan karbohidrat yang cukup tinggi. Residu padat ini dapat diproses dengan pirolisis untuk menghasilkan bio-minyak, fase air, arang, dan gas. Produk bio-minyak dan gas dapat digunakan untuk bahan bakar, arang dapat digunakan untuk kebutuhan farmasi, dan fase air sebagai bahan kimia dapat digunakan di bidang makanan dan kesehatan. Proses pirolisis dilakukan dalam reaktor fixed-bed dengan suhu 300-600°C. Pemanasan dilakukan dengan listrik melalui kawat nikel yang dibungkus di luar reaktor. Produk pirolisis berupa gas dikondensasi dalam kondensor, kondensat yang terbentuk diukur beratnya. Berat char diukur setelah proses pirolisis selesai, sementara gas yang tidak dapat dikondensasi dihitung beratnya dari perbedaan bobot awal SPR dikurangi bobot cair (bio-oil dan fase air) dan char. Sampel SPR dianalisis proksimat dan ultimat, sedangkan produk bio-minyak dianalisis dengan metode GC-MS. Hasil percobaan menunjukkan bahwa suhu optimum pirolisis adalah 500ºC yang menghasilkan bio-oil, water phase, arang, dan gas berturut-turut adalah 18,45; 20;  32,02 dan 29,54 % berat. Hasil GC-MS dari bio-oil terdiri dari keton, alifatik, nitrogen, alkohol dan asam, sedangkan PAH, fenol dan tidak ditemukan.


2020 ◽  
Vol 849 ◽  
pp. 47-52
Author(s):  
Siti Jamilatun ◽  
Aster Rahayu ◽  
Yano Surya Pradana ◽  
Budhijanto ◽  
Rochmadi ◽  
...  

Nowadays, energy consumption has increased as a population increases with socio-economic developments and improved living standards. Therefore, it is necessary to find a replacement for fossil energy with renewable energy sources, and the potential to develop is biofuels. Bio-oil, water phase, gas, and char products will be produced by utilizing Spirulina platensis (SPR) microalgae extraction residue as pyrolysis raw material. The purpose of this study is to characterize pyrolysis products and bio-oil analysis with GC-MS. Quality fuel is good if O/C is low, H/C is high, HHV is high, and oxygenate compounds are low, but aliphatic and aromatic are high. Pyrolysis was carried out at a temperature of 300-600°C with a feed of 50 grams in atmospheric conditions with a heating rate of 5-35°C/min, the equipment used was a fixed-bed reactor. The higher the pyrolysis temperature, the higher the bio-oil yield will be to an optimum temperature, then lower. The optimum temperature of pyrolysis is 550°C with a bio-oil yield of 23.99 wt%. The higher the pyrolysis temperature, the higher the H/C, the lower O/C. The optimum condition was reached at a temperature of 500°C with the values of H/C, and O/C is 1.17 and 0.47. With an increase in temperature of 300-600°C, HHV increased from 11.64 MJ/kg to 20.63 MJ/kg, the oxygenate compound decreased from 85.26 to 37.55 wt%. Aliphatics and aromatics increased, respectively, from 5.76 to 36.72 wt% and 1.67 to 6.67 wt%.


2021 ◽  
Author(s):  
Jordi Escuer-Gatius ◽  
Krista Lõhmus ◽  
Merrit Shanskiy ◽  
Karin Kauer ◽  
Hanna Vahter ◽  
...  

<p>Agricultural activities can have several adverse impacts on the environment; such as important greenhouse gas (GHG) emissions. To implement effective mitigation measures and create effective policies, it is necessary to know the full carbon and nitrogen budgets of agro-ecosystems. However, very often, information regarding the pools or fluxes involved in the carbon and nitrogen cycles is limited, and essential complementary data needed for a proper interpretation is lacking.</p><p>This study aimed to quantify all the relevant pools and fluxes of a winter rapeseed, a widely spread crop in the Europe and Baltic regions. The N<sub>2</sub>O and CH<sub>4</sub> fluxes were measured weekly using the closed static chamber method from August 2016 to August 2017 in a winter rapeseed field in Central Estonia. Additionally, nutrient leaching and soil chemical parameters, as well as environmental parameters like soil moisture, electrical conductivity and temperature were monitored. At the end of the season, the rapeseed and weed biomasses were collected, weighed and analyzed. The remaining relevant fluxes in the N cycle were calculated using various non-empirical methods: NH<sub>3</sub> volatilization was estimated from slurry and environmental parameters, N deposition and NO<sub>x</sub> emissions were obtained from national reports, and N<sub>2</sub> emissions were calculated with the mass balance method. Regarding the C cycle, gross primary production (GPP) of the rapeseed field was also calculated by the mass balance method. Simultaneously, for comparison and validation purposes, GPP was estimated from the data provided by MOD17A2H v006 series from NASA, and N<sub>2</sub> was estimated from the measured emissions of N<sub>2</sub>O using the N<sub>2</sub>:N<sub>2</sub>O ratio calculated from the DAYCENT model equations.</p><p>N<sub>2</sub> emissions and GPP were the biggest fluxes in the N and C cycles, respectively. N<sub>2</sub> emissions were followed by N extracted with plant biomass in the N cycle, while in the carbon cycle soil and plant respiration and NPP were the highest fluxes after GPP. The carbon balance was positive at the soil level, with a net increase in soil carbon during the period, mainly due to GPP carbon capture. Contrarily, the nitrogen balance resulted in a net loss of N due to the losses related to gaseous emissions (N<sub>2</sub> and N<sub>2</sub>O) and leaching.</p><p>To conclude, it was possible to close the C and N budgets, despite the inherent difficulties of estimating the different C and N environmental pools and fluxes, and the uncertainties deriving from some of the fluxes estimations.</p>


2019 ◽  
Vol 19 (3) ◽  
pp. 703 ◽  
Author(s):  
Siti Jamilatun ◽  
Budhijanto Budhijanto ◽  
Rochmadi Rochmadi ◽  
Avido Yuliestyan ◽  
Arief Budiman

With a motto of preserving nature, the use of renewable resources for the fulfillment of human needs has been seen echoing these days. In response, microalgae, a water-living microorganism, is perceived as an interesting alternative due to its easy-to-cultivate nature. One of the microalgae, which possess the potential for being the future source of energy, food, and health, is Spirulina plantesis. Aiming to identify valuable chemicals possibly derived from it, catalytic and non-catalytic pyrolysis process of the residue of S. plantesis microalgae has been firstly carried out in a fixed-bed reactor over the various temperature of 300, 400, 500, 550 and 600 °C. The resulting vapor was condensed so that the liquid product consisting of the top product (oil phase) and the bottom product (water phase) can be separated. The composition of each product was then analyzed by Gas Chromatography-Mass Spectrometry (GC-MS). In the oil phase yield, the increase of aliphatic and polyaromatic hydrocarbons (PAHs) and the decrease of the oxygenated have been observed along with the increase of pyrolysis temperature, which might be useful for fuel application. Interestingly, their water phase composition also presents some potential chemicals, able to be used as antioxidants, vitamins and food additives.


2018 ◽  
Vol 93 (6) ◽  
pp. 1757-1766 ◽  
Author(s):  
Andreu Fontova ◽  
Martí Lecina ◽  
Jonatan López-Repullo ◽  
Iván Martínez-Monge ◽  
Pere Comas ◽  
...  

1987 ◽  
Vol 109 (1) ◽  
pp. 205-207 ◽  
Author(s):  
R. J. Stevens ◽  
H. J. Logan

Agronomic experiments have shown that nitrogen applied in organic manures gives variable responses in grass growth (van Dijk & Sturm, 1983; Smith, Unwin & Williams, 1985). In a series of field trials in southern England, the average apparent recovery in herbage of the nitrogen from cow slurry was only 13% (Unwin, Pain & Whinham, 1986). The volatilization of ammonia from spread slurry is one possible mechanism for the nitrogen inefficiency (Freney, Simpson & Denmead, 1983; Ryden, 1984). Direct measurements of ammonia loss from land surfaces can be made by micrometeorological methods (Denmead, 1983) and, using the micrometeorological mass balance technique, high rates of ammonia loss were recorded after the land spreading of liquid dairy cattle manure in Canada (Beauchamp, Kidd & Thurtell, 1982). The micrometeorological mass balance method has been used in England to measure ammonia loss from a grazed sward (Ryden & McNeill, 1984). This paper presents the results of an experiment where the same method was used to measure the ammonia loss after land-spreading cattle slurry in Northern Ireland.


1993 ◽  
Vol 23 (3) ◽  
pp. 552-557 ◽  
Author(s):  
Michael D. Pillers ◽  
John D. Stuart

Litter fall and litter decomposition were measured in old-growth coastal redwood (Sequoiasempervirens (D. Don) Endl.) forests. Hillside and bottomland areas at inland and coastal locations were selected as representative sites. Both litter-bag and insitu mass-balance analyses were used to determine decomposition rates. Average annual litter fall at the four sites ranged from 3120 to 4690 kg•ha−1•year−1. Decomposition rate constants (k) calculated from the mass-balance analysis ranged from 0.117 to 0.238 year−1. Values of k estimated from the litter-bag analysis ranged from 0.273 to 0.405 year−1. Equilibrium litter loads from mass-balance analysis ranged from 15 700 to 30 000 kg•ha−1. Equilibrium litter loads estimated from litter-bag analysis ranged from 7760 to 14 500 kg•ha−1. Litter-layer equilibrium was between 12 and 26 years using the mass-balance analysis and between 7 and 11 years with the litter-bag study. The mass-balance method for calculating decomposition constants showed that litter at coastal sites decomposed faster than at inland sites. There were no differences between upland and bottomland sites. The litter-bag method, in contrast, indicated that litter at inland sites decomposed faster than at coastal sites. Significant regressions of litter decomposition constants as functions of summer average relative humidity, temperature, vapor-pressure deficit, and litter moisture were found with the mass-balance method. There were no significant regressions of temperature and moisture variables with litter decomposition constants calculated with the litter-bag analysis.


Sign in / Sign up

Export Citation Format

Share Document