scholarly journals Removal of Methylene Blue Dye From Aqueous Solution Using PDADMAC Modified ZSM-5 Zeolite as a Novel Adsorbent 

Author(s):  
Sabarish Radoor ◽  
Jasila Karayil ◽  
Aswathy Jayakumar ◽  
Jyotishkumar Parameswaranpillai ◽  
Suchart Siengchin

Abstract In the present work, we modified ZSM-5 zeolite using a bio polymer poly (diallyl dimethyl ammonium chloride) and employed it for the removal of cationic dye, methylene blue from aqueous solution. The chemical and physical properties of the modified ZSM-5 zeolite were investigated using XRD, FTIR, SEM, TEM, nitrogen adsorption, TGA and 27Al NMR. Modified ZSM-5 zeolite possesses high surface area and pore diameter which was confirmed from SEM, TEM and nitrogen adsorption analysis. Adsorption of methylene blue on zeolite was investigated by batch adsorption technique. The effect of different parameters such as zeolite dosage, initial methylene blue concentration, temperature, pH and contact time on the adsorption process was discussed. Maximum adsorption capacity (4.31 mg/g) was achieved using 0.1g of modified ZSM-5 zeolite at the optimum conditions (initial dye concentration: 10 mg/L, pH: 10, temperature:30oC and contact time: 300 min). The experimental data were fitted into Langmuir and Freundlich models and the results indicate that the adsorption process followed Freundlich isotherm. Kinetic data were investigated using pseudo-first-order and pseudo-second-order models. Kinetic analysis indicates that pseudo-second-order model is more suitable to describe adsorption of MB on modified ZSM-5 zeolite. The reusability test suggests that the adsorbent could be reused at least six times without significant loss in removal efficiency.

Author(s):  
Mukhamad Nurhadi ◽  
Iis Intan Widiyowati ◽  
Wirhanuddin Wirhanuddin ◽  
Sheela Chandren

The evaluation of kinetic adsorption process of sulfonated carbon-derived from Eichhornia crassipes in the adsorption of methylene blue dye from aqueous solution has been carried out. The sulfonated carbon-derived from E. crassipes (EGS-600) was prepared by carbonation of E. crassipes powder at 600 °C for 1 h, followed by sulfonation with concentrated sulfuric acid for 3 h. The physical properties of the adsorbents were characterized by using Fourier transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and nitrogen adsorption-desorption studies. Adsorption study using methylene blue dye was carried out by varying the contact time and initial dye concentration for investigated kinetics adsorption models. The effect of varying temperature was used to determine the thermodynamic parameter value of ΔG, ΔH, and ΔS. The results showed that the equilibrium adsorption capacity was 98% when EGS-600 is used as an adsorbent. The methylene blue dye adsorption onto adsorbent takes place spontaneity and follows a pseudo-second-order adsorption kinetic model. Copyright © 2019 BCREC Group. All rights reservedReceived: 20th April 2018; Revised: 28th August 2018; Accepted: 4th September 2018; Available online: 25th January 2019; Published regularly: April 2019How to Cite: Nurhadi, M., Widiyowati, I.I., Wirhanuddina, W., Chandren, S. (2019). Kinetic of Adsorption Process of Sulfonated Carbon-derived from Eichhornia crassipes in the Adsorption of Methylene Blue Dye from Aqueous Solution. Bulletin of Chemical Reaction Engineering & Catalysis, 14 (1): 17-27 (doi:10.9767/bcrec.14.1.2548.17-27)Permalink/DOI: https://doi.org/10.9767/bcrec.14.1.2548.17-27 


2020 ◽  
Vol 23 (10) ◽  
pp. 370-376
Author(s):  
Thamrin Azis ◽  
La Ode Ahmad ◽  
Keke Awaliyah ◽  
Laode Abdul Kadir

Research on the equilibrium and adsorption kinetics of methylene blue dye using tannin gel from the Tingi tree (Ceriops tagal) has been carried out. This study aims to determine the capacity and adsorption kinetics of tannin gel against methylene blue dye. Several parameters, such as the effect of contact time, pH, and methylene blue dye concentration on adsorption, were also studied. Based on the research results, the optimum adsorption process is a contact time of 30 minutes and a pH of 7. The adsorption capacity increased to a concentration of 80 mg/L with a maximum adsorption capacity (qm) of 49.261 mg/g. The adsorption process follows the pseudo-second-order adsorption kinetics model and the Langmuir isotherm model.


2021 ◽  
pp. 1-12
Author(s):  
Raafia Najam ◽  
Syed Muzaffar Ali Andrabi

Sawdust of willow has been investigated as an adsorbent for the removal of Ni(II), and Cd(II) ions from aqueous solution. Since willow tree is widely grown in almost all parts of Kashmir, it can be a common most easily available, sustainable, low cost adsorbent for the treatment of wastewaters in this part of the world where growing industrialization is affecting water quality like elsewhere in the world. Therefore, it is worthwhile to investigate the potential of sawdust of willow tree as an adsorbent for the removal of Ni(II) and Cd(II) ions from aqueous solution as a first step. Batch experiments were conducted to study the effect of some parameters such as contact time, initial concentration of metal ions, solution pH and temperature. Langmuir and Freundlich models were employed for the mechanistic analysis of experimental data obtained. Results reveal that in our system adsorption follows the Langmuir isotherm. The maximum adsorption capacity of Ni(II) and Cd(II) were found to be 7.98 and 7.11 mg/g respectively at optimum conditions. The pseudo-first-order and pseudo-second-order models were employed for kinetic analysis of adsorption process. The adsorption process follows pseudo-second-order kinetics. The efficacy of the adsorbent in the treatment of effluent from fertilizer factory has been investigated and the results have been found encouraging.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 852
Author(s):  
Sicong Yao ◽  
Massimiliano Fabbricino ◽  
Marco Race ◽  
Alberto Ferraro ◽  
Ludovico Pontoni ◽  
...  

Digestate, as an urban solid waste, was considered as an innovative adsorbent for colorant polluted wastewater. Batch adsorption experiments were carried out using digestate as an adsorbent material to remove various dyes belonging to different categories. The removal rate and adsorption capacity of dyes were evaluated and the dose of digestate, contact time, and initial dye concentration were studied. The maximum removal rate was approximately 96% for Methylene Blue. The equilibrium time for the Methylene Blue was 4 h, while for other dyes, a longer contact time was required to reach the equilibrium. The suspicion of colloidal matter release into the solution from solid fraction of the digestate led to the investigation of the consequence of a washing step of the digestate adsorbent upstream the adsorption experiment. Washed and not washed adsorbents were tested and the differences between them in terms of dye removal were compared. Moreover, experimental data were fitted by pseudo-first order, pseudo-second order, and intra-partial diffusion kinetic models as well as Langmuir, Freundlich, and Sips isotherm models. The results from fitted models showed that the adsorption of various dyes onto the digestate was mostly well fitted by the Langmuir isotherm and pseudo-second-order kinetic model.


2008 ◽  
Vol 10 (2) ◽  
pp. 43-49 ◽  
Author(s):  
Mohammed Uddin ◽  
Mohammed Islam ◽  
Mohammed Islam ◽  
Mohammed Abedin

Uptake of phenol from aqueous solution by burned water hyacinth The potential of burned water hyacinth (BWH) for phenol adsorption from aqueous solution was studied. Batch kinetic and isotherm studies were carried out under varying experimental conditions of contact time, phenol concentration, adsorbent dosage and pH. The pH at the point of zero charge (pHPZC) of the adsorbent was determined by the titration method and the value of 8.8 ± 0.2 was obtained. The FTIR of the adsorbent was carried out in order to find the potential adsorption sites for the interaction with phenol molecules. The Freundlich and Langmuir adsorption models were used for the mathematical description of adsorption equilibrium and it was found that the experimental data fitted very well to the Langmuir model. Maximum adsorption capacity of the adsorbent was found to be 30.49 mg/g. Batch adsorption models, based on the assumption of the pseudo-first-order and pseudo-second-order models, were applied to examine the kinetics of the adsorption. The results showed that kinetic data closely followed the pseudo-second-order model.


2020 ◽  
Vol 42 (1) ◽  
pp. 10-18
Author(s):  
Tae Hyun Gil ◽  
Wang Heon Lee ◽  
Johng-Hwa Ahn

Objective : Present research discussed the utilization of pumpkin-seed residue (PSR) after oil extraction with methanol as an adsorbent for methylene blue (MB) removal from aqueous solution.Method : The experiment was carried out to evaluate the influence of PSR adsorbent dose (7.5-25 g/L), initial MB concentration (25-200 mg/L), contact time (30-120 min), pH (3-11), and temperature (293-333 K). Adsorption isotherms were modeled with the Langmuir, Freundlich, and Temkin isotherms. The kinetic data were analyzed using pseudo-first-order and pseudo-second-order models.Results and Discussion : A pseudo-equilibrium state was reached within 30 min of contact time at low initial MB concentration (25-50 mg/L) and 90 min at high concentration (100-200 mg/L). Increasing pH and temperature caused an increase in adsorption capacity. Thermodynamic studies demonstrated that the adsorption process was spontaneous with Gibb’s free-energy values ranging between -15.78 to -13.87 kJ/mol and endothermic with an enthalpy value of 0.011 kJ/mol. The adsorption equilibrium data fitted well with the Freundlich adsorption isotherm. The maximum monolayer adsorption capacity was 20.33 mg/g. Tempkin isotherm model clarified that the heat of sorption process was 6.28 J/mol. The adsorption kinetics was found to follow the pseudo-second order kinetics model and its rate constant was 0.002-0.278 g/mg・min.Conclusions : Findings of the present study indicated that the PSR can be successfully used for removal of MB from aqueous solution. Therefore, the PSR was shown to have good potential as a biosorbent for MB removal.


2013 ◽  
Vol 68 (2) ◽  
pp. 441-447 ◽  
Author(s):  
Diego S. Paz ◽  
Alexandre Baiotto ◽  
Marcio Schwaab ◽  
Marcio A. Mazutti ◽  
Mariana M. Bassaco ◽  
...  

In this study papaya seeds were used to remove methylene blue dye from aqueous solution. Papaya seeds were characterized as possessing a macro/mesoporous texture and large pore size. Studies were carried out in batches to evaluate the effect of contact time and pH (2–12) on the removal of dye. It was observed that the adsorption of dye was better in the basic region (pH 12). The equilibrium data were analyzed using Langmuir, Freundlich, Dubinin–Raduschkevich, Tempkin, Jovanovich, Redlich–Peterson, Sips, Toth and Radke–Prausnitz isotherms. The equilibrium data were best described by the Langmuir isotherm with a maximum adsorption capacity of 637.29 mg g–1. Adsorption kinetic data were fitted using the pseudo-first-order and pseudo-second-order model. The adsorption kinetic is very fast and was best described by the pseudo-second-order model.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Asma Nasrullah ◽  
Hizbullah Khan ◽  
Amir Sada Khan ◽  
Zakaria Man ◽  
Nawshad Muhammad ◽  
...  

The ash ofC. polygonoides(locally called balanza) was collected from Lakki Marwat, Khyber Pakhtunkhwa, Pakistan, and was utilized as biosorbent for methylene blue (MB) removal from aqueous solution. The ash was used as biosorbent without any physical or chemical treatment. The biosorbent was characterized by using various techniques such as Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The particle size and surface area were measured using particle size analyzer and Brunauer-Emmett-Teller equation (BET), respectively. The SEM and BET results expressed that the adsorbent has porous nature. Effects of various conditions such as initial concentration of methylene blue (MB), initial pH, contact time, dosage of biosorbent, and stirring rate were also investigated for the adsorption process. The rate of the adsorption of MB on biomass sample was fast, and equilibrium has been achieved within 1 hour. The kinetics of MB adsorption on biosorbent was studied by pseudo-first- and pseudo-second-order kinetic models and the pseudo-second-order has better mathematical fit with correlation coefficient value (R2) of 0.999. The study revealed thatC. polygonoidesash proved to be an effective, alternative, inexpensive, and environmentally benign biosorbent for MB removal from aqueous solution.


2016 ◽  
Vol 6 (3) ◽  
pp. 377-388 ◽  
Author(s):  
Ibrahim Umar Salihi ◽  
Shamsul Rahman Muhamed Kutty ◽  
Muhamed Hasnain Isa ◽  
Nasir Aminu

Pollution caused by heavy metals has become a serious problem to the environment nowadays. The treatment of wastewater containing heavy metals continues to receive attention because of their toxicity and negative impact on the environment. Recently, various types of adsorbents have been prepared for the uptake of heavy metals from wastewater through the batch adsorption technique. This study focused on the removal of zinc from aqueous solution using microwave incinerated sugarcane bagasse ash (MISCBA). MISCBA was produced using microwave technology. The influence of some parameters such as pH, contact time, initial metal concentration and adsorbent dosage on the removal of zinc was investigated. The competition between H+ and metal ions has affected zinc removal at a low pH value. Optimum conditions for zinc removal were achieved at pH 6.0, contact time 180 min and adsorbent dosage of 10 g/L, respectively. The maximum adsorption capacity for the removal of zinc was found to be 28.6 mg/g. The adsorption process occurred in a multilayered surface of the MISCBA. Chemical reaction was the potential mechanism that regulates the adsorption process. MISCBA can be used as an effective and cheap adsorbent for treatment of wastewater containing zinc metal ions.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Seraj Anwar Ansari ◽  
Fauzia Khan ◽  
Anees Ahmad

Cauliflower leaf powder (CLP), a biosorbent prepared from seasonal agricultural crop waste material, has been employed as a prospective adsorbent for the removal of a basic dye, methylene blue (MB) from aqueous solution by the batch adsorption method under varying conditions, namely, initial dye concentration, adsorbent dose, solution pH, and temperature. Characterization of the material by FTIR and SEM indicates the presence of functional groups and rough coarse surface suitable for the adsorption of methylene blue over it. Efforts were made to fit the isotherm data using Langmuir, Freundlich, and Temkin equation. The experimental data were best described by Freundlich isotherm model, with an adsorption capacity of 149.22 mg/g at room temperature. To evaluate the rate of methylene blue adsorption onto CLP, pseudo-first-order, pseudo-second-order, and intraparticle diffusion models were employed. The experimental data were best described by the pseudo-second-order kinetic model. Evaluation of thermodynamic parameters such as changes in enthalpy, entropy, and Gibbs’ free energy showed the feasible, spontaneous, and exothermic nature of the adsorption process. On the basis of experimental results obtained, it may be concluded that the CLP prepared from agricultural waste has considerable potential as low-cost adsorbent in wastewater treatment for the removal of basic dye, MB.


Sign in / Sign up

Export Citation Format

Share Document