scholarly journals Impact Analysis in Addition of Amylase Enzyme and Cellulose Enzyme Mixture toward Biogas Production from Rice Husk Waste using Solid State Anaerobic Digestion (SS-AD) Method

Author(s):  
Dyanung Larasati ◽  
Nurandani Hardyanti ◽  
Sri Sumiyati ◽  
Winardi Dwi Nugraha ◽  
Syafrudin Syafrudin

This research intend to analyze effect of concentrated amylase enzyme and cellulose enzyme, production rate and quality of biogas produced from rice husk waste. The rice husk was given chemical pretreatment by soaking it into NaOH 6 % for 24 hours. Then washed using water so that the pH became normal then dried under the sun before put it inside the reactor with the other enzyme, rumen and urea. The reactor that used has volume of 200ml and has total of 18 reactor with each variable has 2 reactor. Variance of concentrated enzyme that used are 9%, 12%, 15% and 18%. Biogas measurement done every 2 days for 60 days. Result from this research show that addition mixture of amylase enzyme and cellulose enzyme increase yield of biogas that produced. Because yield that produce from reactor with addition of 9%, 12%, 15%, 18% enzyme consecutively are 604 ml, 935 ml, 1041,5 ml and 2922,5 ml. whereas the reactor that not given enzyme only has biogas yield of 115 ml. the highest production rate occur on reactor that were given 18% of enzyme mixture with the production constant rate of 5,39 ml/(grTS day), maximum biogas production amount of 68,53 ml/grTS and the minimum time for biogas to formed is 0,92 days

2018 ◽  
Vol 44 ◽  
pp. 00114 ◽  
Author(s):  
Natalia Mioduszewska ◽  
Mariusz Adamski ◽  
Anna Smurzyńska ◽  
Jacek Przybył ◽  
Krzysztof Pilarski

The aim of the study was to evaluate the usefulness of sugar beet for biogas production, taking into account the duration time of storage and sugar content in the roots. The research has included analysis of methane and biogas yield of sugar beet. The relations between the sugar content in the roots and the length of storage period and the course of the methane fermentation process were determined. Sugar beets with sugar content of 17.6% and 19.6% were used for this experiment. In order to analyse the fermentation process, the fresh beets and the beets stored in flexible, hermetic tanks in the period of 43 and 89 days were used. Based on the analysis of the obtained results, it was found that the sugar content and the storage time of sugar beet roots can differentiate the production of biomethane and that it influences the methane fermentation process and the quality of the produced biogas.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3074
Author(s):  
Apostolos Spyridonidis ◽  
Ioanna A. Vasiliadou ◽  
Christos S. Akratos ◽  
Κaterina Stamatelatou

Biogas plants have been started to expand recently in Greece and their positive contribution to the economy is evident. A typical case study is presented which focuses on the long-term monitoring (lasting for one year) of a 500 kW mesophilic biogas plant consisting of an one-stage digester. The main feedstock used was cow manure, supplemented occasionally with chicken manure, corn silage, wheat/ray silage, glycerine, cheese whey, molasses and olive mill wastewater. The mixture of the feedstocks was adjusted based on their availability, cost and biochemical methane potential. The organic loading rate (OLR) varied at 3.42 ± 0.23 kg COD m−3 day−1 (or 2.74 ± 0.18 kg VS m−3 day−1) and resulted in a stable performance in terms of specific biogas production rate (1.27 ± 0.12 m3 m−3 day−1), biogas yield (0.46 ± 0.05 m3 kg−1 VS, 55 ± 1.3% in methane) and electricity production rate (12687 ± 1140 kWh day−1). There were no problems of foaming, nor was there a need for trace metal addition. The digestate was used by the neighboring farmers who observed an improvement in their crop yield. The profit estimates per feedstock indicate that chicken manure is superior to the other feedstocks, while molasses, silages and glycerin result in less profit due to the long distance of the biogas plant from their production source. Finally, the greenhouse gas emissions due to the digestate storage in the open air seem to be minor (0.81% of the methane consumed).


Author(s):  
Jialin Chen ◽  
Ruijiang Yang ◽  
Da Xu ◽  
Bin Zhou ◽  
Yifang Jin

AbstractLow biogas yield in cold climates has brought great challenges in terms of the flexibility and resilience of biogas energy systems. This paper proposes a maximum production point tracking method for a solar-boosted biogas generation system to enhance the biogas production rate in extreme climates. In the proposed method, a multi-dimensional R–C thermal circuit model is formulated to analyze the digesting thermodynamic effect of the anaerobic digester with solar energy injection, while a hydrodynamic model is formulated to express the fluid dynamic interaction between the hot-water circulation flow and solar energy injection. This comprehensive dynamic model can provide an essential basis for controlling the solar energy for digester heating to optimize anaerobic fermentation and biogas production efficiency in extreme climates. A model predictive control method is developed to accurately track the maximum biogas production rate in varying ambient climate conditions. Comparative results demonstrate that the proposed methodology can effectively control the fermentation temperature and biogas yield in extreme climates, and confirm its capability to enhance the flexibility and resilience of the solar-boosted biogas generation system.


2013 ◽  
Vol 46 (4) ◽  
pp. 118-122
Author(s):  
Ondrej Cundr ◽  
Dagmar Haladova

Abstract The main objective of this work was to test the suitability of rice husk waste biomass for anaerobic digestion and to examine the energy potential of the co-digestion of rice husk with zebu dung. Rice husk and zebu dung were studied under batch anaerobic conditions as separate wastes as well as mixed in various proportions. All experiments were carried out at 5% of total solids. The methane yield achieved by single substrate digestion of rice husk and zebu dung was 13.9 l and 44.58 l CH4/kg volatile solids (VS), respectively. The co-digestion of 50% total solids (TS) rice straw with 50% total solids zebu dung gave the result of 38.42 l CH4/kg VS. According to these results, the degradation and methane production potential of rice husk were not sufficient and it was found that this residue material is less suitable for single substrate digestion without additional pretreatment than for co-digestion. Even if co-digestion of rice husk with zebu dung improved the digestibility of rice husk and hence increased the biogas production, the methane yield was lower in comparison with the result for zebu dung, due to the high lignin content in rice husk. Nevertheless, the proof of digestibility of rice husk showed the possibility of rational exploitation of this waste material.


2018 ◽  
Vol 21 (3) ◽  
pp. 115-118
Author(s):  
Viera Kažimírová ◽  
Ján Gaduš ◽  
Tomáš Giertl

Abstract The paper deals with biogas yield production from two co-substrates - sorghum silage mixture of corn silage and crushed potatoes combined with mixture of livestock manure and swine slurry - in a semi-continuous digester under mesophilic conditions. This paper aims to evaluate the suitability of alternative substrates for biogas production under biogas plant operational conditions. In the first experiment, biogas yield was 0.159 Nm3 per hour with methane content of 56.96% vol. In the second experiment, biogas yield was 0.18 Nm3 per hour with methane content of 52.95% vol. Experiments confirmed that both substrates are suitable for biogas production under the given conditions.


2020 ◽  
Vol 50 (10) ◽  
Author(s):  
Lisandra Maraia Villa ◽  
Ana Carolina Amorim Orrico ◽  
Luana Alves Akamine ◽  
Jorge de Lucas Junior ◽  
Natália da Silva Sunada

ABSTRACT: Anaerobic co-digestion (AcoD) of waste is a method of increasing methane (CH4) yield and improving biofertilizer quality. This study aimed to evaluate the best AcoD conditions for swine manure (SM) with sweet potato (SP) or cassava (C) in different amounts in semi-continuous biodigesters. Initially, using batch biodigesters, an AcoD test of the SM with SP or C was performed, adopting carbon/nitrogen (C/N) ratios of 10/1, 13/1, 17/1, and 22/1. Based on the results, a C/N ratio of 10/1 was chosen, which was the proportion that resulted in the highest reduction of volatile solids (VS) and specific biogas production. From these results, the experiment was carried out in semi-continuous biodigesters, consisting of three treatments (control (SM), SP 10/1, and C 10/1) with five replicates and a hydraulic retention time (HRT) of 30 days. Total solid (TS) and volatile solid (VS) reductions, biogas and CH4 yields, alkalinity, and volatile acidity were measured. The control treatment differed from the others and resulted in decreased biogas yield (752 LN.kgVSadded -1), CH4 (449 LN.kgVSadded -1), and CH4 content (59.7%). The AcoD treatments (SP and C) did not differ significantly for biogas yield (respectively, 901 and 883 LN.kgVSadded -1) and CH4 (respectively, 590 and 547 LN.kgVSadded -1); however, they differed in CH4 content (65.5% and 61.9% respectively). The treatments showed general reduction averages of 76.1% and 85.9% for TS and VS, respectively, with no statistical difference found between them. The AcoD of the SM with SP or C increased the production and quality of the biogas, increasing the concentration of CH4 therein.


2020 ◽  
Vol 202 ◽  
pp. 08004
Author(s):  
Syafrudin ◽  
Winardi Dwi Nugraha ◽  
Aisyah Bahrani ◽  
Hashfi Hawali Abdul Matin ◽  
Budiyono

Biogas technology solves the problem of energy crisis. Biogas is a renewable and environment friendly fuel (Franthena, 2015). This study aims to determine the optimum value of grinding size variations in biogas production with the solid state anaerobic digestion (SS-AD) method of biogas production from rice husk waste. We divide the method used into four stages, namely, the testing phase of total rice content, solids, preparation phase, operation phase, and results analysis. The rice husk waste used for this study came from the Rowosari area. We accept rice for preliminary treatment with chemical pretreatment (NaOH). We soaked rice husk with a concentration of 6% NaOH for 24 hours as a control variable. Milling variations used as physical pretreatment are 10 mesh, 18 mesh, 35 mesh, 60 mesh. We used bioreactors with a volume of 200 ml. We observed all biogas reactors produced every two days for ± 60 days of research. The results showed that the reactors with 10 mesh, 18 mesh, 35 mesh, 60 mesh milling variations obtained a total biogas yield of 11.688484; 9,479955; 12.50772; 19,03718 ml / grTS until the 60th day. The control reactor (without grinding variations) produced 9,084606 ml / grTS. The highest biogas production level is 60 mesh with a value, (A) 19.03718 (ml / grTS); the rate of biogas production (U) 0.2416979 (ml / gr TS.day); and the minimum time for biogas formation (λ) is 3.83908 days.


Author(s):  
Ajcharapa Chuanchai ◽  
Sawitree Tipnee ◽  
Yuwalee Unpaprom ◽  
Keng-Tung Wu

Recently, biogas production through anaerobic digestion technology has advanced massively. At the moment, caused by high energy demand and environmental concerns as the world’s population increases, the drive for anaerobic digestion processes is achievement drive within research and the industry for sustainable energy generation. The study evaluated biogas production from anaerobic mono-digestion of para grass in laboratory scale studies. In addition, improvement of the biogas yield from the grass via chemical pretreatment and leaching bed reactors was studied. Methane content of biogas was 54.36 % by mono- substrate. The results revealed that para grass can be treated anaerobically and are a good source of biogas.


2021 ◽  
Vol 7 (3) ◽  
pp. 224-230
Author(s):  
Mtamabari Simeon Torbira ◽  
Ebigenibo Genuine Saturday

A modified fixed dome digester with stirring mechanism has been designed and constructed and used for the anaerobic digestion of cow dung slurry at 5%-7% Total solid (TS) concentration within the mesophylic temperature range. The quality of biogas gas produced was between 54%-69% methane (CH4) content. The Carbon to Nitrogen ratio (C: N) varied between 35:1 - 45:1. Total biogas yield obtained over the detention period was about 261 L. The maximum and minimum temperatures recorded over the 95 days period was 32oC and 25 oC respectively. The volume of biogas yield, Vb (m3) was observed to increase with the percentage total solid, PTS (%). The details of the design and construction of the biogas digester plant and its cost are reported. The performance of the plant was very satisfactory. Investigation into the anaerobic digestion revealed that cow dung has great potentials for generation of biogas.


Sign in / Sign up

Export Citation Format

Share Document