scholarly journals ANALISA FORWARD KINEMATIC PADA SIMULATOR ARM ROBOT 5 DOF YANG MENGINTEGRASIKAN MIKROKONTROLER ARDUINO-UNO DAN LABVIEW

ROTASI ◽  
2013 ◽  
Vol 15 (2) ◽  
pp. 37
Author(s):  
Munadi Munadi

An arm robot simulator has been developed, that capable in simulating a 5 degree of freedom robot manipulator, in which it was equipped with two-finger gripper mechanism at end-effector. This simulator is designed for educational purposes so that many students can easily understand when learning about robot manipulator. The simulator was developed using Ardiuno Uno with LabVIEW through the Firmata interface for controlling the actuators (servo motors). Ardiuno Uno was chosen because it can interact with LabVIEW that will be able to control the angular position of servo motor easily. Angular position errors that occur on the servo motor can be solved by using a numerical program functions and numerical multiply divided on LabVIEW. For analysis, this paper presents the forward kinematics problem which is concerned with the relationship between the individual joints of the arm robot simulator and the position and orientation of the tool or end-effector. The analysis result is carried out in MATLAB.

Author(s):  
Mohammad Reza Elhami ◽  
Iman Dashti

In analyzing robot manipulator kinematics, we need to describe relative movement of adjacent linkages or joints in order to obtain the pose of end effector (both position and orientation) in reference coordinate frame. Denavit-Hartenberg established a method based on a 4×4 homogenous matrix so called “A” matrix. This method used by most of the authors for kinematics and dynamic analysis of the robot manipulators. Although it has many advantages, however, finding the elements of this matrix and link/joint’s parameters is sometimes complicated and confusing. By considering these difficulties, the authors proposed a new approach called ‘convenient approach’ that is developed based on “Relative Transformations Principle”. It provides a very simple and convenient way for the solution of robot kinematics compared to the conventional D-H representation. In order to clarify this point, the kinematics of the world known Stanford manipulator has been solved through D-H representation as well as convenient approach and the results are compared.


2008 ◽  
Vol 2 (4) ◽  
pp. 305-311 ◽  
Author(s):  
Shinichiro Shindo ◽  
◽  
Shingo Tomita ◽  
Yasumichi Aiyama

Impact manipulation instantaneously generates a large force making it effective for pressfitting. We model pressfitting and analyze it for realization by a robot manipulator, analyzing the relationship between hit speed and pressfitting depth to determine the hit speed required for different pressfitting depths. We use an under-actuated manipulator for hitting the “sweet spot” of the end effector, introducing a simple genetic algorithm to plan manipulator movement to generate the desired hit speed. Results of experiments on pressfitting for driving an under-actuated manipulator verified the feasibility of our proposal.


Author(s):  
Andreas Mu¨ller

It is commonly assumed that the singularities of serial manpulators constitute generically smooth manifolds. This assumption has not been proved yet, nor is there an established notion of of genericity. In this paper two different notions of generic properties of forward kinematic mappings are discussed. Serial manipulators are classified according to the type of end-effector motion and feasible manipulator geometries. A sufficient condition for that generically singularities form locally smooth manifolds is presented. This condition admits to separately treat the individual classes. As an example it is shown that the singularities of 3-DOF manipulators form generically smooth manifolds.


2011 ◽  
Vol 697-698 ◽  
pp. 795-798
Author(s):  
Jian Ye Zhang ◽  
Chen Zhao ◽  
Da Wei Zhang

The Position and orientation accuracy of robot manipulator has long become a major issue to be considered in its advanced application. A linear error model that described the end-effector position and orientation errors of the master salve surgical robot system due to kinematics parameters errors has been presented. A computer program to perform the accuracy analysis has been developed in MATLAB. This methodology and software are applied to the accuracy analysis of a master-slave surgical robot system. The position error in its workspace cross section (XOZ) has been plotted as 3D surface graph and discussed.


2017 ◽  
Vol 7 (1) ◽  
pp. 37
Author(s):  
Andi Chairunnas

<em>The movement of the robot with wheels almost do not experience problems setting when road conditions tend to be flat or bypassed. However, problems arise when the condition of the streets where tend to be broken or wavy. With these problems legged robot is suitable for solving the problem. Legged robot itself is divided on several types, among others, two-legged robot (humanoid), four-legged robot (Quadpod), and a six-legged robot (Hexapod). This research will be discussed on how to build a Hexapod robot control at the system by applying the pattern step tripod gait on a Hexapod robot so that the accuracy of movement applied on a Hexapod Robot will produce the maximal movement patterns. In addition before determining the pattern step shall be applied forward gait tripod kinematic. Generally forward kinematic derived from around the corner join configuration so that the position of the end effector in Cartesian spaces (x, y) can determine the position of the corners on a servo motor from different corners of the position or angle of the servo value used to form the shape of the foot of each leg can determine the changes when the maneuver. It was only the application of pattern step tripod gait can be done, the robot can run well and constant can even generate some movement such as forward, backward, turn left, turn right. On testing the movement Forward in open areas and advanced on the Area Covered with an average speed of 5 cm/s, testing Motion backward on open areas and retreat in enclosed areas with an average speed of 4.32 cm/s, testing the rotary motion Right on open and Turning Right on Closed with an average speed of 13 degrees/minutes, testing the rotary motion of the left in the open and Turning left on Closed with an average speed of 12.85 degrees/sec The power needed, overall testing on areas of open and enclosed areas is 0.3 Volts with an overall duration of use 240.8 seconds.</em>


Author(s):  
ERWANI MERRY SARTIKA ◽  
RUDI SARJONO ◽  
HAZEL XARIS CHRISOPHRAS

ABSTRAKSistem pick and place merupakan suatu sistem mekanik yang digunakan untuk memanipulasi pergerakan mengangkat, memindahkan, dan meletakkan untuk meringankan kerja manusia. Dalam mempelajari cara kerja robot industri sederhana dibuat miniatur robot pick and place (sederhana). Perancangan yang dibuat yaitu sistem pick and place dengan dua derajat kebebasan dengan ukuran yang memiliki perbandingan 1:0.35 dari referensi ukuran desain robot. Aplikasi SolidWorks digunakan untuk mendesain robot Diamond. Metode Regresi digunakan untuk memprediksi posisi motor servo dalam mencapai posisi yang diinginkan. Metode regresi berhasil digunakan untuk mencari hubungan antara target posisi setpoint dengan posisi motor servo 1 dan 2 (persamaan orde 2 dan 3) untuk mengontrol motor servo. Performansi yang terbaik dari sistem pick and place yang dibuat menggunakan trayektori miring, dengan kecepatan 100 (11.1 rpm), menghasilkan error ± 0.0729 dan presisi 1.63%. Dalam penelitian ini, kecepatan end-effector yang lebih rendah menghasilkan keakurasian dan kepresisian yang lebih baik.Kata kunci: Pick and Place, Robot Diamond, Dua derajat kebebasan, Regresi ABSTRACTThe pick and place system are a mechanic system used in manipulating the movements of lifting, moving, and laying to ease human work. In learning how to work a simple industrial robot, a miniature pick and place robot is created. The design made is a pick and place system with two degrees of freedom with a size that has a ratio of 1: 0.35 from the reference size of the robot design. Regression method is used to predict the position of the servo motor in reaching the desired position. Regression method was successfully used to find the relationship between the target setpoint position and the position of servo motors 1 and 2 (order equations 2 and 3) to control the servo motor. The best performance from the pick and place system that is made using an aslope trajectory, with a speed of 100 (11.1 rpm), produces an error ± 0.0729 and precision 1.63%. In this research, lower end-effector speeds result in better accuracy and precision.Keywords: Pick and Place, Diamond Robot, 2-DOF, Regression


Robotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 31
Author(s):  
Alexey Fomin ◽  
Anton Antonov ◽  
Victor Glazunov ◽  
Yuri Rodionov

The proposed study focuses on the inverse and forward kinematic analysis of a novel 6-DOF parallel manipulator with a circular guide. In comparison with the known schemes of such manipulators, the structure of the proposed one excludes the collision of carriages when they move along the circular guide. This is achieved by using cranks (links that provide an unlimited rotational angle) in the manipulator kinematic chains. In this case, all drives stay fixed on the base. The kinematic analysis provides analytical relationships between the end-effector coordinates and six controlled movements in drives (driven coordinates). Examples demonstrate the implementation of the suggested algorithms. For the inverse kinematics, the solution is found given the position and orientation of the end-effector. For the forward kinematics, various assembly modes of the manipulator are obtained for the same given values of the driven coordinates. The study also discusses how to choose the links lengths to maximize the rotational capabilities of the end-effector and provides a calculation of such capabilities for the chosen manipulator design.


Robotica ◽  
1994 ◽  
Vol 12 (4) ◽  
pp. 361-369 ◽  
Author(s):  
Helmut Allgeuer

SUMMARYIn this paper a control strategy for a redundant PUMA robot is presented. This robot is obtained from the conventional PUMA robot by addition of a joint parallel to the elbow joint. For redundancy resolution the following approach is chosen. From the position and pointing direction of the end effector of the PUMA robot the position and orientation of the fourth link of a 4R-manipulato? is calculated and the redundancy is resolved for this manipulator. This is done by adding an equation to the relationship between the joint angles and position and orientation of the fourth link. By this approach a control strategy is derived that allows motions of the end effector of the PUMA robot in a large part of its work space and shows repeatable behaviour. Furthermore, the redundancy is utilized so that the fiexture of the wrist is kept small.


Author(s):  
Yong-Lin Kuo ◽  
Shih-Chien Tang

This paper presents a modified resolved acceleration control scheme based on deep regression of the convolutional neural network. The resolved acceleration control scheme can achieve precise motion control of robot manipulators by regulating the accelerations of the end-effector, and the conventional scheme needs the position and orientation of the end-effector, which are obtained through the direct kinematics of the robot manipulator. This scheme increases the computational loads and might obtain inaccurate position and orientation due to mechanical errors. To overcome the drawbacks, a camera is used to capture the images of the robot manipulator, and then a deep regression of convolutional neural network is imposed into the resolved acceleration control to obtain the position and orientation of the end-effector. The proposed approach aims to enhance the positioning accuracy, to reduce the computational loads, and to facilitate the deep regression in real-time control. In this study, the proposed approach is applied to a 3-DOF planar parallel robot manipulator, and the results are compared with those by the conventional resolved acceleration control and a visual servo-based control. The results show that those objectives are achieved. Furthermore, the robustness of the proposed approach is tested through only the partial image of the end-effector available, and the proposed approach still works functionally and effectively.


Author(s):  
H. Singh ◽  
J. S. Dai ◽  
D. R. Kerr

Abstract A method has been developed that successfully represents the workspace of a parallel manipulator within a finite twist image space. A point in this space represents a unique position and orientation of the end effector. The method of analysis is based upon the established technique of simplifying the parallel manipulator, by modelling each leg as an independent serial manipulator. The workspace corresponding to each serial manipulator is mapped onto the image space to produce a hyper-volume. The intersection of the individual hyper-volumes represents the workspace of the complete parallel manipulator. Since the hyper-volume corresponds to all possible positions attainable by the end effector, this represents the reachable workspace. Within the reachable workspace there lies subsets of volumes in ⮲3 that correspond to all possible orientations attainable. Such volumes represent the dextrous workspace. Although the method is illustrated by the use of a Stewart platform, it is equally applicable to the general parallel manipulator. The method is demonstrated successfully by the use of a 3 legged, 3-DOF planar parallel manipulator.


Sign in / Sign up

Export Citation Format

Share Document