scholarly journals An efficient protocol for in vitro regeneration from the nodal explants of Withania coagulans (Stocks) Dunal: a valuable medicinal herb

2021 ◽  
Vol 117 (2) ◽  
pp. 1
Author(s):  
Pari DEHVARI-NAGAN ◽  
Hosein ABBASPOUR ◽  
Mohammad Hasan ASARE ◽  
Sara SAADATMAND

<p>In order to develop a protocol for the effective micropropagation of the important medicinal plant Withania coagulans (Stocks) Dunal, the effects of different concentrations and combinations of growth regulators on the nodal explants in two independent experiments were investigated. For shooting, a MS medium fortified with different concentrations and combinations of IBA (0.01, 0.1 and 0.5 mg l-1), BA (0.5, 1 and 2 mg l-1), Kin (0.5 and 1 mg l-1), PG (0.5 mg l-1) and GA (0.5 mg l-1) was used and the highest shooting response, shoot number and shoot length were obtained in the MS + IBA (0.01 mg l-1) + BA (0.5 mg l-1) + PG (0.5 mg l-1) + GA (0.5 mg l-1) treatment. In the second experiment, the effect of MS supplemented with different combinations and concentrations of IBA (0.1, 0.5, 1 and 2 mg l-1), NAA (0.1 and 1 mg l-1) and PG (1 mg l-1) on rooting of the nodal explants was investigated, which showed that the highest rooting response (%) was observed in the MS fortified with NAA (0.1 mg l-1), NAA (1 mg l-1), NAA (0.1 mg l-1) + PG (1 mg l-1), and NAA (1 mg l-1) + PG (1 mg l-1) treatments, as well as the highest number of roots at NAA (0.1 mg l-1) and the highest root length at IBA (1 mg l-1). Our findings highlight a complete micropropagation method for W. coagulans from the nodal explant that can make a significant contribution to the development of W. coagulans material for medical applications.</p>

1970 ◽  
Vol 8 (2) ◽  
pp. 203-206 ◽  
Author(s):  
MM Khatun ◽  
MS Hossain ◽  
MA Haque ◽  
M Khalekuzzaman

A standard protocol was established for rapid in vitro propagation of watermelon (Citrullus lanatus Thumb.) from nodal explants of field grown plant. Multiple shoot proliferation was achieved from nodal explants on MS medium supplemented with 1.0 mg/l BAP + 0.2 mg/l NAA within 30 days of inoculation. The elongation of shoots was obtained on the same medium. Highest percentage of root induction was achieved on MS medium supplement with 1.0 mg/l IBA within 25 days of culture. Well rooted plantlets were transferred to small pots and after proper acclimatization the plantlets were transplanted in the field condition, where 80% plantlets were survived and grew successfully. Keywords: In vitro regeneration; Nodal explant; Citrullus lanatus DOI: 10.3329/jbau.v8i2.7926 J. Bangladesh Agril. Univ. 8(2): 203-206, 2010  


2014 ◽  
Vol 22 (1) ◽  
pp. 35-39 ◽  
Author(s):  
Mafatlal M. Kher ◽  
Dimpal Joshi ◽  
Sureshkumar Nekkala ◽  
M. Nataraj ◽  
Dharmesh P. Raykundaliya

AbstractPluchea lanceolata is an important medicinal plant of Asteraceae family known for its anti-arthritic and anti-inflammatory activity. A protocol was established for micropropagation of P. lanceolata using nodal explants. Nodal explants were inoculated onto Murashige and Skoog (1962) - MS medium supple–mented with 6-benzylaminopurine (BAP), kinetin (Kin), thidiazuron (TDZ) and 2iP (2-isopentenyladenine) at various concentrations (0.0, 0.5, 1.0, 1.5 and 2.0 mg·dm-3). The highest multiplication rate was obtained for nodal explants cultured on MS medium, supplemented with 0.5 mg·dm-3 thidiazuron (TDZ). In vitro raised shoots were successfully rooted on ½ mineral salt concentration of MS medium supplemented with 1.0 mg dm-3 IBA.


2016 ◽  
Vol 26 (2) ◽  
pp. 187-195 ◽  
Author(s):  
Harsh Joshi ◽  
Sureshkumar Nekkala ◽  
Deepak Soner ◽  
Mafatlal M Kher ◽  
M Nataraj

Withania coagulans (Stocks) Dunal is an important medicinal plant of Solanaceae. Nodal segments obtained from field grown plants were used as explants. 1 ? 2 cm long nodal segment with a single one bud was cultured on MS containing 2.5 mg/l thidiazuron (TDZ), 0.1 mg/l NAA and 50 mg/l adenine sulphate (AdS) resulted in formation of 5.16 shoots per node. However, vitrification was observed in all explants within one month. On the other hand nodal explants cultured on MS supplemented with 2.50 mg/l meta?topoline (mT) with 0.1 mg/l NAA and 50 mg/l AdS resulted in the formation of 4.50 healthy and uniformly grown shoots per node.Plant Tissue Cult. & Biotech. 26(2): 187-195, 2016 (December)


2015 ◽  
Vol 14 (13) ◽  
pp. 1129-1138 ◽  
Author(s):  
Prema Sunil Sruthi ◽  
Philip Robinson J ◽  
S KarthickBalan S ◽  
Anandhaprabhakaran M ◽  
Balakrishnan V

Author(s):  
Asfiqur Rahman Plabon ◽  
M. E. Hoque ◽  
Farhana Afrin Vabna ◽  
Fahima Khatun

Salinity is a major problem affecting crop production all over the world. Excessive soil salinity can reduce the productivity of many agricultural crops including many vegetables and spices. Onion is one of the most important spices in the Asiatic region which is now in high demand. The experiment was conducted to observe in vitro regeneration of onion (Allium cepa L.) under salt stress condition from September 2016 to July 2017. The experiment was conducted as two factorial (genotype and treatment) Completely Randomized Design (CRD) with 3 replications for each treatment. Shoot tip segments of three genotypes namely Faridpuri, Taherpuri and Pusa red (Indian) were cultured in MS (Murashige and skoog, 1962) media supplemented with 25, 50, 75 and 100 mM NaCl. The genotype Faridpuri gave maximum salt tolerance upto 100 mM salinity level with 10.60 cm shoot length and 1.94 cm root length having the highest relative shoot and root growth. Pusa red was found to be salinity sensitive genotype which showing lowest shoot length of 7.03 cm and root length of 0.96 cm at 100 mM NaCl treatment. However, Taherpuri was tolerant up to 100 mM salinity level with 8.14 cm shoot length and 1.25 cm root length. Both the highest fresh weight of root (54.77 mg) and dry weight of root (41.36 mg) was from the genotype Faridpuri with 25 mM NaCl treatment. However, a convenient in vitro regeneration protocol of onion genotypes under different salinity level has been developed and the genotype Faridpuri can be used for further investigation in field condition to evaluate its performance at various salinity levels.


Bragantia ◽  
2005 ◽  
Vol 64 (2) ◽  
pp. 185-190
Author(s):  
Luis Carlos da Silva Ramos ◽  
Julieta Andrea Silva de Almeida

Coffee plants can be micropropagated by nodal bud sprouting using the 6-benzylaminopurine (6-BA) hormone. However, literature reports the use of a wide range of 6-BA, from 0.5 to 88.8 µM L-1. So, this study was performed to narrow that range. Nodal explants of Coffea arabica cv Mundo Novo obtained from in vitro plantlets were inoculated on gelled-MS medium supplemented with different concentrations of 6-BA. Two assays were carried out: in the first one, 6-BA was used at concentrations of 0, 5, 25, 50, and 100 µM L-1, being evaluated at 43 and 123 days. In the second experiment, dosis of 10, 20 and 30 µM L-1, have evaluated at 65 and 100 days. Treatments with 6-BA induced multiple sprouting from the nodal explants, which were best characterized around 100 days after inoculation. The nodal explants grew taller and showed multiple shoots, whereas the effect of 6-BA at 5 to 25 µM L-1 was similar to that with higher concentrations (50 and 100 µM L-1). Nodal explants yielded from 2.9 to 6.0 buds per node, achieving height of 1.3 to 1.5 cm at 5 to 25 µM L-1 of 6-BA, whereas they yielded from 4.3 to 4.9 buds per node but the sprouting grew about 0.8 cm at 50 and 100 µM L-1 of 6-BA. This study indicated that multiple sprouting of lateral buds can be induced by lower concentrations of 6-BA, for example, from 10 to 30 µM L-1, diminishing possible risks of somaclonal variation due to high levels of hormone concentration.


2021 ◽  
Vol 2 (1) ◽  
pp. 130-133
Author(s):  
Abha Jha ◽  
◽  
Sunila Das ◽  

The present experimental study was aimed to overcome the traditional methods of propagation that limit the number of propagules by in-vitro regeneration through nodal explants of Dendrocalamus hamiltonii with a comparative study of growth regulators during the shooting and rooting process. Dendrocalamus hamiltonii is distributed from the Himalayas (Nepal) to the northern part of Burma. Collection of explants was done from different selected sites of CPTs. There was the use of HgCl2 and Ca (OCl)2 as sterilizing agents in different concentrations and its effect was visualized during the sprouting stage. Culm explants were cultured in a bottle containing White media (Wm) supplemented with BA and Kinetin for sprouting and IAA, IBA, NAA for rooting. There is also the use of IAA+IBA+NAA in combined form as a supplementary solution 0.1% HgCl2 treatment for 20-minute results into77.80% aseptic buds and 72% bud -break. Among the used growth-hormones, BA with concentration 0.25mg/l and 0.50mg/l respectively were appropriate for shoot-multiplication rate, 4.01±0.3 and 4.3±0.4 were ideal observation incorporation with BA (1.00mg/l) and BA (1.50mg/l) respectively. Maximum sprouting rate14.77±3.37with application of BA (2.00mg/l) and maximum shoot length4.3±0.4 is observed at BA (1.50mg/l). The applications of rooting hormone IAA+IBA+NAA in the concentration of 1.0 mg/l results in 72.5±0.3(rooting) and 11.1±0.3 (av. No. of the root).


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hassan O. Shaikhaldein ◽  
Fahad Al-Qurainy ◽  
Mohammad Nadeem ◽  
Salim Khan ◽  
Mohamed Tarroum ◽  
...  

Abstract Silver nanoparticles (AgNPs) are presently the most commonly generated engineered nanomaterials and are found in a wide range of agro-commercial products. The present study was designed to synthesize AgNPs biologically using Ochradenus arabicus leaves and investigate their effect on the morphophysiological properties of Maerua oblongifolia raised in vitro. Physicochemical methods (ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy were performed for characterization and for obtaining microphotographs of the AgNPs. Shoots of M. oblongifolia (2–3 cm) grown in Murashige and Skoog medium supplemented with different concentrations of AgNPs (0, 10, 20, 30, 40, or 50 mg L−1) were used. Following 6 weeks of in vitro shoot regeneration, the shoot number, shoot length, leaf number, fresh weight, dry weight, chlorophyll content, total protein, proline level, and antioxidant enzyme activities of the plants were quantified. We found that 20 mg L−1 AgNPs increased the shoot number, shoot length, fresh weight, dry weight, and chlorophyll content of the plants. The maximum total protein was recorded in plants that were administered the lowest dose of AgNPs (10 mg L−1), while high concentrations of AgNPs (40 and 50 mg L−1) increased the levels of proline and the enzymes superoxide dismutase and catalase. Our results indicate that green-synthesized AgNPs may be of agricultural and medicinal interest owing to their effects on plants in vitro.


Our Nature ◽  
1970 ◽  
Vol 7 (1) ◽  
pp. 110-115 ◽  
Author(s):  
A. Sen ◽  
M.M. Sharma ◽  
D. Grover ◽  
A. Batra

An efficient in vitro plant regeneration protocol was developed for the medicinally potent plant species Phyllanthus amarus Schum. and Thonn. (Euphorbiaceae) using nodal segment as explant. Maximum multiplication of shoots (15.275±0.96) was achieved on Murashige and Skoog’s medium supplemented with BAP (0.5 mg/l) after 3-4 weeks of inoculation. The shoots were separated from cluster and subcultured for their elongation on the same medium. In vitro flowering was also observed on the elongated shoots after 3–4 weeks of sub culturing on the shoot elongation medium. In vitro rooting was obtained on half strength MS medium supplemented with IBA (0.5 mg/l).  Regenerated plants were successfully hardened and acclimatized, 80 % of plantlets survived well under natural conditions after transplantation.Key words: In vitro regeneration, multiple shoots, nodal segments, Phyllanthus amarusDOI: 10.3126/on.v7i1.2557Our Nature (2009) 7:110-115


Sign in / Sign up

Export Citation Format

Share Document