scholarly journals Perinatal Risk Factor and Morbidity in Term Large-for-Gestational-Age Infants according to Classification by Ponderal Index

Perinatology ◽  
2020 ◽  
Vol 31 (1) ◽  
pp. 32
Author(s):  
Yeon Ho Kang ◽  
Eun Song Song ◽  
Ga Eun Choi ◽  
In Ji Hwang ◽  
Young Youn Choi
2021 ◽  
Vol 9 ◽  
Author(s):  
Serdar Beken ◽  
Saygin Abali ◽  
Neslihan Yildirim Saral ◽  
Bengisu Guner ◽  
Taha Dinc ◽  
...  

Introduction: Restricted or enhanced intrauterine growth is associated with elevated risks of early and late metabolic problems in humans. Metabolomics based on amino acid and carnitine/acylcarnitine profile may have a role in fetal and early postnatal energy metabolism. In this study, the relationship between intrauterine growth status and early metabolomics profile was evaluated.Materials and Methods: A single-center retrospective cohort study was conducted. Three hundred and sixty-one newborn infants were enrolled into the study, and they were grouped according to their birth weight percentile as small for gestational age (SGA, n = 69), appropriate for gestational age (AGA, n = 168), and large for gestational age (LGA, n = 124) infants. In all infants, amino acid and carnitine/acylcarnitine profiles with liquid chromatography-tandem mass spectrometry (LC-MS/MS) were recorded and compared between groups.Results: LGA infants had higher levels of glutamic acid and lower levels of ornithine, alanine, and glycine (p < 0.05) when compared with AGA infants. SGA infants had higher levels of alanine and glycine levels when compared with AGA and LGA infants. Total carnitine, C0, C2, C4, C5, C10:1, C18:1, C18:2, C14-OH, and C18:2-OH levels were significantly higher and C3 and C6-DC levels were lower in SGA infants (p < 0.05). LGA infants had higher C3 and C5:1 levels and lower C18:2 and C16:1-OH levels (p < 0.05). There were positive correlations between free carnitine and phenylalanine, arginine, methionine, alanine, and glycine levels (p < 0.05). Also, a positive correlation between ponderal index and C3, C5-DC, C14, and C14:1 and a negative correlation between ponderal index and ornithine, alanine, glycine, C16:1-OH, and C18:2 were shown.Conclusion: We demonstrated differences in metabolomics possibly reflecting the energy metabolism in newborn infants with intrauterine growth problems in the early postnatal period. These differences might be the footprints of metabolic disturbances in future adulthood.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
José G. B. Derraik ◽  
Sarah E. Maessen ◽  
John D. Gibbins ◽  
Wayne S. Cutfield ◽  
Maria Lundgren ◽  
...  

AbstractWhile there is evidence that being born large-for-gestational-age (LGA) is associated with an increased risk of obesity later in life, the data are conflicting. Thus, we aimed to examine the associations between proportionality at birth and later obesity risk in adulthood. This was a retrospective study using data recorded in the Swedish Birth Register. Anthropometry in adulthood was assessed in 195,936 pregnant women at 10–12 weeks of gestation. All women were born at term (37–41 weeks of gestation). LGA was defined as birth weight and/or length ≥2.0 SDS. Women were separated into four groups: appropriate-for-gestational-age according to both weight and length (AGA – reference group; n = 183,662), LGA by weight only (n = 4,026), LGA by length only (n = 5,465), and LGA by both weight and length (n = 2,783). Women born LGA based on length, weight, or both had BMI 0.12, 1.16, and 1.08 kg/m2 greater than women born AGA, respectively. The adjusted relative risk (aRR) of obesity was 1.50 times higher for those born LGA by weight and 1.51 times for LGA by both weight and height. Length at birth was not associated with obesity risk. Similarly, women born LGA by ponderal index had BMI 1.0 kg/m2 greater and an aRR of obesity 1.39 times higher than those born AGA. Swedish women born LGA by weight or ponderal index had an increased risk of obesity in adulthood, irrespective of their birth length. Thus, increased risk of adult obesity seems to be identifiable from birth weight and ignoring proportionality.


Author(s):  
Danielle R. Stevens ◽  
Brian Neelon ◽  
James R. Roberts ◽  
Sarah N. Taylor ◽  
Roger B. Newman ◽  
...  

Abstract The mechanism through which developmental programming of offspring overweight/obesity following in utero exposure to maternal overweight/obesity operates is unknown but may operate through biologic pathways involving offspring anthropometry at birth. Thus, we sought to examine to what extent the association between in utero exposure to maternal overweight/obesity and childhood overweight/obesity is mediated by birth anthropometry. Analyses were conducted on a retrospective cohort with data obtained from one hospital system. A natural effects model framework was used to estimate the natural direct effect and natural indirect effect of birth anthropometry (weight, length, head circumference, ponderal index, and small-for-gestational age [SGA] or large-for-gestational age [LGA]) for the association between pre-pregnancy maternal body mass index (BMI) category (overweight/obese vs normal weight) and offspring overweight/obesity in childhood. Models were adjusted for maternal and child socio-demographics. Three thousand nine hundred and fifty mother–child dyads were included in analyses (1467 [57.8%] of mothers and 913 [34.4%] of children were overweight/obese). Results suggest that a small percentage of the effect of maternal pre-pregnancy BMI overweight/obesity on offspring overweight/obesity operated through offspring anthropometry at birth (weight: 15.5%, length: 5.2%, head circumference: 8.5%, ponderal index: 2.2%, SGA: 2.9%, and LGA: 4.2%). There was a small increase in the percentage mediated when gestational diabetes or hypertensive disorders were added to the models. Our study suggests that some measures of birth anthropometry mediate the association between maternal pre-pregnancy overweight/obesity and offspring overweight/obesity in childhood and that the size of this mediated effect is small.


2018 ◽  
Vol 218 (1) ◽  
pp. S177-S178
Author(s):  
Naama Steiner ◽  
Asnat Walfisch ◽  
Tamar Wainstock ◽  
Idit Sesgal ◽  
Daniella Landau ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Mingze Du ◽  
Junwei Zhang ◽  
Xiaona Yu ◽  
Yichun Guan

ObjectiveTo explore whether elevated anti-Müllerian hormone (AMH) levels affect the rate of preterm birth (PTB) among PCOS patients with different BMIs.MethodsIn this retrospective cohort study, patients with PCOS who had undergone IVF/ICSI from January 2017 to December 2019 were included for potential evaluation. A total of 2368 singleton live births from PCOS patients were included. According to the BMI, all the PCOS patients were divided into two groups: BMI<24 kg/m2 and BMI≥24 kg/m2. In total, 1339 PCOS patients with a BMI<24 kg/m2 were grouped according to their serum AMH levels: ① <2.71 ng/ml (n=333), ② 2.71-4.08 ng/ml (n=330), ③ 4.09-6.45 ng/ml (n=351), and ④ >6.45 ng/ml (n=325). Additionally, 1029 cycles of patients with a BMI≥24 kg/m2 were grouped according to the serum AMH level: ① <2.71 ng/ml (n=255), ② 2.71-4.08 ng/ml (n=267), ③ 4.09-6.45 ng/ml (n=239), and ④ >6.45 ng/ml (n=268), with <2.71 ng/ml being considered the reference group. The grouping was based mainly on the interquartile range of serum AMH levels. The primary outcome of the study was PTB. The secondary outcomes were low birth weight (LBW), small for gestational age (SGA), macrosomia and large for gestational age (LGA).ResultsRegarding PCOS patients with a BMI<24 kg/m2, compared with the PTB rate of the AMH <2.71 ng/ml group, the PTB rates of the different groups were not significantly different (AMH 2.71-4.08, AOR (95% CI)=1.01 (0.52-2.00), P=0.99; AMH 4.09-6.45, AOR (95% CI)=0.93 (0.45-1.91), P=0.85; AMH>6.45, AOR (95% CI)=0.78 (0.35-1.73), P=0.54). Regarding PCOS patients with a BMI ≥24 kg/m2, compared with the PTB rate of the AMH <2.71 ng/ml group, the PTB rate of the AMH>6.45 ng/ml group was significantly higher (OR=2.47; 95% CI=1.34-4.55). After multiple logistic regression analysis, the risk of PTB in the AMH>6.45 ng/ml group was 2.1 times that in the AMH<2.71 ng/ml group (AOR=2.1, 95% CI=1.01-4.37, P=0.04). However, no statistically significant difference was found in the rate of SGA, LBW, macrosomia or LGA among patients in the different serum AMH groups.ConclusionFor PCOS patients, a BMI≥24 kg/m2 plus serum AMH>6.45 ng/ml (75th percentile) is an independent risk factor for PTB.


PLoS ONE ◽  
2019 ◽  
Vol 14 (8) ◽  
pp. e0221400 ◽  
Author(s):  
Seung Mi Lee ◽  
Byoung Jae Kim ◽  
Ja Nam Koo ◽  
Errol R. Norwitz ◽  
Ig Hwan Oh ◽  
...  

PLoS ONE ◽  
2019 ◽  
Vol 14 (10) ◽  
pp. e0224845
Author(s):  
Seung Mi Lee ◽  
Byoung Jae Kim ◽  
Ja Nam Koo ◽  
Errol R. Norwitz ◽  
Ig Hwan Oh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document