Balancing tradeoffs between machining time and energy consumption for impeller rough machining

Author(s):  
Oscar Velásquez Arriaza ◽  
Dong-Won Kim ◽  
Jong-Yeong Lee ◽  
M. A. Suhaimi
2017 ◽  
Vol 43 ◽  
pp. 164-170 ◽  
Author(s):  
Oscar Velásquez Arriaza ◽  
Dong-Won Kim ◽  
Dong Yoon Lee ◽  
Mohd. Azlan Suhaimi

Author(s):  
Ahmad Reza Jafarian-Moghaddam

AbstractSpeed is one of the most influential variables in both energy consumption and train scheduling problems. Increasing speed guarantees punctuality, thereby improving railroad capacity and railway stakeholders’ satisfaction and revenues. However, a rise in speed leads to more energy consumption, costs, and thus, more pollutant emissions. Therefore, determining an economic speed, which requires a trade-off between the user’s expectations and the capabilities of the railway system in providing tractive forces to overcome the running resistance due to rail route and moving conditions, is a critical challenge in railway studies. This paper proposes a new fuzzy multi-objective model, which, by integrating micro and macro levels and determining the economical speed for trains in block sections, can optimize train travel time and energy consumption. Implementing the proposed model in a real case with different scenarios for train scheduling reveals that this model can enhance the total travel time by 19% without changing the energy consumption ratio. The proposed model has little need for input from experts’ opinions to determine the rates and parameters.


Membranes ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 43
Author(s):  
Manuel César Martí-Calatayud ◽  
Mario Sancho-Cirer Poczatek ◽  
Valentín Pérez-Herranz

Electrodialysis (ED) has been recently introduced in a variety of processes where the recovery of valuable resources is needed; thus, enabling sustainable production routes for a circular economy. However, new applications of ED require optimized operating modes ensuring low energy consumptions. The application of pulsed electric field (PEF) electrodialysis has been demonstrated to be an effective option to modulate concentration polarization and reduce energy consumption in ED systems, but the savings in energy are usually attained by extending the operating time. In the present work, we conduct a comprehensive simulation study about the effects of PEF signal parameters on the time and energy consumption associated with ED processes. Ion transport of NaCl solutions through homogeneous cation-exchange membranes is simulated using a 1-D model solved by a finite-difference method. Increasing the pulse frequency up to a threshold value is effective in reducing the specific energy consumption, with threshold frequencies increasing with the applied current density. Varying the duty cycle causes opposed effects in the time and energy usage needed for a given ED operation. More interestingly, a new mode of PEF functions with the application of low values of current during the relaxation phases has been investigated. This novel PEF strategy has been demonstrated to simultaneously improve the time and the specific energy consumption of ED processes.


Author(s):  
Qingzhu Wang ◽  
Xiaoyun Cui

As mobile devices become more and more powerful, applications generate a large number of computing tasks, and mobile devices themselves cannot meet the needs of users. This article proposes a computation offloading model in which execution units including mobile devices, edge server, and cloud server. Previous studies on joint optimization only considered tasks execution time and the energy consumption of mobile devices, and ignored the energy consumption of edge and cloud server. However, edge server and cloud server energy consumption have a significant impact on the final offloading decision. This paper comprehensively considers execution time and energy consumption of three execution units, and formulates task offloading decision as a single-objective optimization problem. Genetic algorithm with elitism preservation and random strategy is adopted to obtain optimal solution of the problem. At last, simulation experiments show that the proposed computation offloading model has lower fitness value compared with other computation offloading models.


Sensor Review ◽  
2018 ◽  
Vol 38 (3) ◽  
pp. 369-375 ◽  
Author(s):  
Sathya D. ◽  
Ganesh Kumar P.

PurposeThis study aims to provide a secured data aggregation with reduced energy consumption in WSN. Data aggregation is the process of reducing communication overhead in wireless sensor networks (WSNs). Presently, securing data aggregation is an important research issue in WSNs due to two facts: sensor nodes deployed in the sensitive and open environment are easily targeted by adversaries, and the leakage of aggregated data causes damage in the networks, and these data cannot be retrieved in a short span of time. Most of the traditional cryptographic algorithms provide security for data aggregation, but they do not reduce energy consumption.Design/methodology/approachNowadays, the homomorphic cryptosystem is used widely to provide security with low energy consumption, as the aggregation is performed on the ciphertext without decryption at the cluster head. In the present paper, the Paillier additive homomorphic cryptosystem and Bonehet al.’s aggregate signature method are used to encrypt and to verify aggregate data at the base station.FindingsThe combination of the two algorithms reduces computation time and energy consumption when compared with the state-of-the-art techniques.Practical implicationsThe secured data aggregation is useful in health-related applications, military applications, etc.Originality/valueThe new combination of encryption and signature methods provides confidentiality and integrity. In addition, it consumes less computation time and energy consumption than existing methods.


1993 ◽  
Vol 115 (4) ◽  
pp. 424-431 ◽  
Author(s):  
Z. Dong ◽  
H. Li ◽  
G. W. Vickers

An optimal approach to the rough machining of sculptured parts with least machining time is presented. The contour map cutting method is used to generate CNC tool paths based on the CAD model of sculptured parts. The part and stock geometry related parameters, including the number of cutting layers and the distributions of cutting depth, and the process parameters of feed rate and depth of cut, are optimized. The method can automate CNC programming for sculptured part rough machining, considerably improve productivity, and lower production costs. Two examples are used to illustrate the approach and its advantages.


2021 ◽  
Vol 1193 (1) ◽  
pp. 012005
Author(s):  
O Rodríguez ◽  
P E Romero ◽  
E Molero ◽  
G Guerrero

Abstract Manufacturing process engineers must continually take decisions to make the processes efficient. Manufacturing time, surface finish and energy consumption are aspects to be optimized in machining. This study analyzes the efficiency of groove milling in milling aluminum alloys EN AW 2024-T3 with zig-zag and trochoidal strategies. Dynamic milling is designed to maximize the removal rate and optimize the tool performance. This generates a discontinuous cutting with minimum of heat reducing build-up with an optimal chip removal minimizing cutting edge wear. The influence of lateral pitch, feed per tooth, cutting speed and coolant pressure has been analyzed. The depth of curt has been adapted for each strategy and tool type. The study was proposed through a factorial design of experiments by the Taguchi method. The machining time (T) and energy consumption (EC) show a strong influence of the lateral step (a e ) in conventional milling. A similar level of influence appears with the feed per tooth (f z ) on the trochoidal. The roughness (Ra) is more influenced by cutting speed (V c ) for conventional milling and by feed per tooth (f z ) and lateral pitch (a e ) for the trochoidal.


2016 ◽  
Vol 5 (1) ◽  
pp. 60-69 ◽  
Author(s):  
Pablo R. Velasco González

Tiziana Terranova draws attention to the necessity of questioning how algorithmically enabled automation works “in terms of control and monetization” and “what kind of time and energy” is being subsumed by it (Terranova 387). Cryptocurrencies are payment technologies that automate the production of money-like tokens (Bergstra and Weijland) following algorithmic rules to maintain a fixed production rate. Different kinds of energy and residues, which are not always acknowledged, are involved in this process. Here I distinguish between two closely linked layers in the Bitcoin token production: first, an algorithmic layer, which contains the instructions and rules for the creation of bitcoins; second, a hardware layer, which performs and embodies the former. While these layers work together, I will argue that they enact their own kind of logics of energy and waste. I will begin at the more visible end of the production cycle, the hardware layer, where the definition of waste and energy consumption is shared with many electronic devices; then I will trace back its algorithmic layer, which as I argue, follows a different logic.


Sign in / Sign up

Export Citation Format

Share Document