scholarly journals Advances in efficiency in the groove milling of aluminium EN AW 2024-T3 with zig-zag and trochoidal strategies

2021 ◽  
Vol 1193 (1) ◽  
pp. 012005
Author(s):  
O Rodríguez ◽  
P E Romero ◽  
E Molero ◽  
G Guerrero

Abstract Manufacturing process engineers must continually take decisions to make the processes efficient. Manufacturing time, surface finish and energy consumption are aspects to be optimized in machining. This study analyzes the efficiency of groove milling in milling aluminum alloys EN AW 2024-T3 with zig-zag and trochoidal strategies. Dynamic milling is designed to maximize the removal rate and optimize the tool performance. This generates a discontinuous cutting with minimum of heat reducing build-up with an optimal chip removal minimizing cutting edge wear. The influence of lateral pitch, feed per tooth, cutting speed and coolant pressure has been analyzed. The depth of curt has been adapted for each strategy and tool type. The study was proposed through a factorial design of experiments by the Taguchi method. The machining time (T) and energy consumption (EC) show a strong influence of the lateral step (a e ) in conventional milling. A similar level of influence appears with the feed per tooth (f z ) on the trochoidal. The roughness (Ra) is more influenced by cutting speed (V c ) for conventional milling and by feed per tooth (f z ) and lateral pitch (a e ) for the trochoidal.

2019 ◽  
Vol 952 ◽  
pp. 66-73
Author(s):  
János Kundrák ◽  
Viktor Molnár ◽  
István Deszpoth ◽  
Tamás Makkai

The kinematic versions and applied tools of milling allow for the machining of several surfaces and surface combinations, making it a versatile and widely applied procedure. Face milling for cutting is used for the high productivity manufacturing of prismatic components. Naturally, the enhancement of productivity is a primary goal for manufacturing companies; this study analyzes the efficiency of material removal, which directly influences the time parameters characterizing production performed by face milling. The focus of the paper is to identify the selection of technological data (feed, feed rate, cutting speed, diameter of milling head) that can reduce the machining time or increase the values of material removal rate. Cutting experiments were carried out for machining prismatic components from AlSi9Cu3(Fe) aluminum alloy by diamond tools. It was found that within the performance limits of the manufacturing system it is possible to save a significant amount of manufacturing time while retaining the specified geometric accuracy and surface quality of the component.


TecnoLógicas ◽  
2021 ◽  
Vol 24 (51) ◽  
pp. e1671
Author(s):  
Luis W. Hernández-González ◽  
Dagnier A. Curra-Sosa ◽  
Roberto Pérez-Rodríguez ◽  
Patricia D.C. Zambrano-Robledo

Cutting forces are very important variables in machining performance because they affect surface roughness, cutting tool life, and energy consumption. Reducing electrical energy consumption in manufacturing processes not only provides economic benefits to manufacturers but also improves their environmental performance. Many factors, such as cutting tool material, cutting speed, and machining time, have an impact on cutting forces and energy consumption. Recently, many studies have investigated the energy consumption of machine tools; however, only a few have examined high-speed turning of plain carbon steel. This paper seeks to analyze the effects of cutting tool materials and cutting speed on cutting forces and Specific Energy Consumption (SEC) during dry high-speed turning of AISI 1045 steel. For this purpose, cutting forces were experimentally measured and compared with estimates of predictive models developed using polynomial regression and artificial neural networks. The resulting models were evaluated based on two performance metrics: coefficient of determination and root mean square error. According to the results, the polynomial models did not reach 70 % in the representation of the variability of the data. The cutting speed and machining time associated with the highest and lowest SEC of CT5015-P10 and GC4225-P25 inserts were calculated. The lowest SEC values of these cutting tools were obtained at a medium cutting speed. Also, the SEC of the GC4225 insert was found to be higher than that of the CT5015 tool.


2006 ◽  
Vol 526 ◽  
pp. 205-210
Author(s):  
Jose Antonio Ortiz Marzo ◽  
Carlos Rio ◽  
Xavier Salueña Berna ◽  
Jasmina Casals Terré ◽  
Ana I. Capilla

This study starts from a firm’s needs to improve manufacturing costs and times in an external turning operation with the material according to the standard AISI 630 (martensitic stainless steel, hardened by precipitation), with a hardness of 355 HB. It has been developed a basic factorial design of experiments with two factors (cutting speed and feed per revolution), with constant depth of cut and two levels, with three central points. This experiment has resulted in the obtaining of the machined meters from a tool life criterion, which has limited basically the tool flank wear, VB = 0,2 mm. The balance between the tool wear, maximum machining length and the minimum machining time has been considered from the analysis of the results.


Author(s):  
C. Camposeco-Negrete ◽  
J. Calderón-Nájera ◽  
J. C. Miranda-Valenzuela

Environmental and energy efficiency awareness of manufacturers and customers along with high electricity costs have promoted the development of strategies to reduce energy consumption in manufacturing processes. Machine tools are one of the main contributors to energy consumption in the industrial sector. Several studies have been undertaken to optimize the cutting parameters in order to minimize the power consumed in the removal of material. However, these studies do not consider the influence that different combinations of cutting parameters can have on power consumption at a constant material removal rate, quantity that has a direct influence in production rates. This paper describes an experimental study of AISI 1018 steel turning under roughing conditions and constant material removal rate, in order to obtain the cutting parameters that minimize power consumption. Robust design is used to analyze the effects of the depth of cut, feed rate and cutting speed on electric power consumed.


2014 ◽  
Vol 592-594 ◽  
pp. 610-619
Author(s):  
Chinnathambi Dhavamani ◽  
T. Alwarsamy

Machining of composite materials is an important and current topic in modern researches on manufacturingprocesses. This paper presents the detailed experimental investigation on drilling Aluminium Silicon Carbideparticulate Metal Matrix Composite (Al-SiC –MMC). Experiments were carried out on Radial Drilling Machine.A plan of experiments, based on the techniques of Taguchi, was performed. The objective of this research is tostudy the effect of cutting speed, feed, diameter of cut, machining time on metal removal rate, specific energy,surface roughness, volume fraction and flank wear. The optimum machining parameters were obtained by Greyrelational analysis. Finally, confirmation test was performed to make a comparison between the experimentalresults and developed modelKeywords: Composite materials; drilling processes; Rey relational analysis Optimization


2020 ◽  
Vol 21 (5) ◽  
pp. 523
Author(s):  
Abidin Şahinoğlu ◽  
Efehan Ulas

In recent years, the necessity for energy in the manufacturing industry has become an important problem because fossil fuel reserves are decreasing in order to produce energy. Therefore, the efficient use of energy has become an important research topic. In this study, energy efficiency is investigated in detail for sustainable life and manufacturing. AISI 4140 material with high hardness of 50 HRC hardness has been applied cryogenic process to improve mechanical and machinability properties. In this experiment study, the effects of feed rate (0.04, 0.08, 0.12 mm/rev), cutting speed (140, 160, 180 m/min), depth of cut (0.05, 0.10, 0.15 mm) and tool radius (0.4, 0.8) on energy consumption, surface roughness and sound intensity were investigated. Then, a new mathematical model with high accuracy was developed. Total power consumption was calculated by considering the instantaneous current value and machining time. As a result, it is found that good surface quality obtained when the feed rate is low, and the tool radius is high and the machining time is shortened, the energy consumption is reduced due to the increase in cutting speed, depth of cut and feed rate. Also, it is found that the tool radius has a limited effect on energy consumption, but low feed value increases energy consumption.


2016 ◽  
Vol 1135 ◽  
pp. 234-254 ◽  
Author(s):  
Rosemar Batista da Silva ◽  
Márcio Bacci da Silva ◽  
Wisley Falco Sales ◽  
Emanuel Okechukwu Ezugwu ◽  
Álisson Rocha Machado

Machining efficiency of titanium alloys is crucial to the aerospace industry especially in the manufacture of bladed discs (blisks) where over 80% of titanium alloy material is roughed out to generate the complex shapes and contours of components. The choice of the right tool materials for machining titanium alloys contributes enormously to reducing the overall machining time by significantly lowering the cycle time and indexing of the cutting edges. These improvements lead to a reduction of the manufacturing cost by up to 30%. Uncoated and coated carbide tools have demonstrated encouraging performances when turning Ti-6Al-4V alloy, especially under roughing operations complemented by high pressure cooling technology, at high cutting speed and depth of cut conditions that increase the metal removal rate. Under such cutting conditions there is no significant difference in performance between coated or uncoated carbide tools when turning Ti-6Al-4V alloy. Super abrasives like ceramics and cubic boron nitride (CBN) tools are not suitable for machining titanium alloys as low tool life with no economic benefit is achieved because of severe chipping and fracture of the cutting edge. Machined surfaces produced with ceramic tools have very low surface integrity status because of loss of form as a result of accelerated tool wear and the consequent chipping and fracture encountered during machining. Polycrystalline diamond (PCD) tools are suitable for finish turning Ti-6Al-4V alloy at cutting speeds up to 250 m/min.


Author(s):  
Amritpal Singh ◽  
Rakesh Kumar

In the present study, Experimental investigation of the effects of various cutting parameters on the response parameters in the hard turning of EN36 steel under the dry cutting condition is done. The input control parameters selected for the present work was the cutting speed, feed and depth of cut. The objective of the present work is to minimize the surface roughness to obtain better surface finish and maximization of material removal rate for better productivity. The design of experiments was done with the help of Taguchi L9 orthogonal array. Analysis of variance (ANOVA) was used to find out the significance of the input parameters on the response parameters. Percentage contribution for each control parameter was calculated using ANOVA with 95 % confidence value. From results, it was observed that feed is the most significant factor for surface roughness and the depth of cut is the most significant control parameter for Material removal rate.


Author(s):  
A. Pandey ◽  
R. Kumar ◽  
A. K. Sahoo ◽  
A. Paul ◽  
A. Panda

The current research presents an overall performance-based analysis of Trihexyltetradecylphosphonium Chloride [[CH3(CH2)5]P(Cl)(CH2)13CH3] ionic fluid mixed with organic coconut oil (OCO) during turning of hardened D2 steel. The application of cutting fluid on the cutting interface was performed through Minimum Quantity Lubrication (MQL) approach keeping an eye on the detrimental consequences of conventional flood cooling. PVD coated (TiN/TiCN/TiN) cermet tool was employed in the current experimental work. Taguchi’s L9 orthogonal array and TOPSIS are executed to analysis the influences, significance and optimum parameter settings for predefined process parameters. The prime objective of the current work is to analyze the influence of OCO based Trihexyltetradecylphosphonium Chloride ionic fluid on flank wear, surface roughness, material removal rate, and chip morphology. Better quality of finish (Ra = 0.2 to 1.82 µm) was found with 1% weight fraction but it is not sufficient to control the wear growth. Abrasion, chipping, groove wear, and catastrophic tool tip breakage are recognized as foremost tool failure mechanisms. The significance of responses have been studied with the help of probability plots, main effect plots, contour plots, and surface plots and the correlation between the input and output parameters have been analyzed using regression model. Feed rate and depth of cut are equally influenced (48.98%) the surface finish while cutting speed attributed the strongest influence (90.1%). The material removal rate is strongly prejudiced by cutting speed (69.39 %) followed by feed rate (28.94%) whereas chip reduction coefficient is strongly influenced through the depth of cut (63.4%) succeeded by feed (28.8%). TOPSIS significantly optimized the responses with 67.1 % gain in closeness coefficient.


2013 ◽  
Vol 4 (1) ◽  
pp. 63-68 ◽  
Author(s):  
Zs. Kun ◽  
I. G. Gyurika

Abstract The stone products with different sizes, geometries and materials — like machine tool's bench, measuring machine's board or sculptures, floor tiles — can be produced automatically while the manufacturing engineer uses objective function similar to metal cutting. This function can minimise the manufacturing time or the manufacturing cost, in other cases it can maximise of the tool's life. To use several functions, manufacturing engineers need an overall theoretical background knowledge, which can give useful information about the choosing of technological parameters (e.g. feed rate, depth of cut, or cutting speed), the choosing of applicable tools or especially the choosing of the optimum motion path. A similarly important customer's requirement is the appropriate surface roughness of the machined (cut, sawn or milled) stone product. This paper's first part is about a five-month-long literature review, which summarizes in short the studies (researches and results) considered the most important by the authors. These works are about the investigation of the surface roughness of stone products in stone machining. In the second part of this paper the authors try to determine research possibilities and trends, which can help to specify the relation between the surface roughness and technological parameters. Most of the suggestions of this paper are about stone milling, which is the least investigated machining method in the world.


Sign in / Sign up

Export Citation Format

Share Document