Surface roughness and material removal models for magnetorheological finishing

2013 ◽  
Vol 6 (1) ◽  
pp. 70 ◽  
Author(s):  
Chun Wai Kum ◽  
Takashi Sato ◽  
Stephen Wan
2016 ◽  
Vol 874 ◽  
pp. 158-166
Author(s):  
Run Chen ◽  
Jia Bin Lu ◽  
Qiu Sheng Yan ◽  
Xiao Lan Xiao ◽  
De Yuan Li

The polishing experiments of anodic oxide film of aluminum were performed to research the influence of polishing parameters on the surface roughness and material removal rate in the cluster magnetorheological finishing (MRF). Experimental results demonstrate that a mirror effect can be reached when the anodic oxide film of aluminum is polished by the Cluster MRF. The roughness of the workpiece surface after polishing for 15 min is decreased from Ra 0.575μm to Ra 4.13nm and the material removal rate is 0.653mg/min. With the extension of the polishing time, the surface roughness rapidly declines at first and then slowly decreases. When the machining time is more than 15min, the anodic oxide film of aluminum is easily worn out, resulting in a sharp increase in the surface roughness. The machining gap between the workpiece and the polishing plate influences the polishing effect of anodic oxide film of aluminum. With the increase of the machining gap, the material removal rate decreases and the surface roughness increases. A good surface quality can be got at the machining gap of 1.1mm. The type and size of abrasive particles will directly affect the polishing effect of anodic oxide film of aluminum, and when using CeO2 abrasive with the particle size of W3, a higher material removal rate and a smaller surface roughness can be obtained.


2007 ◽  
Vol 129 (5) ◽  
pp. 961-964 ◽  
Author(s):  
Shai N. Shafrir ◽  
John C. Lambropoulos ◽  
Stephen D. Jacobs

Magnetorheological finishing (MRF) is a precision optical finishing process traditionally limited to processing only nonmagnetic materials, e.g., optical glasses, ceramics, polymers, and metals. Here we demonstrate that MRF can be used for material removal from magnetic material surfaces. Our approach is to place an MRF spot on machined surfaces of magnetic WC-Co materials. The resulting surface roughness is comparable to that produced on nonmagnetic materials. This spotting technique may be used to evaluate the depth of subsurface damage, or deformed layer, induced by earlier manufacturing steps, such as grinding and lapping.


Author(s):  
Amritpal Singh ◽  
Rakesh Kumar

In the present study, Experimental investigation of the effects of various cutting parameters on the response parameters in the hard turning of EN36 steel under the dry cutting condition is done. The input control parameters selected for the present work was the cutting speed, feed and depth of cut. The objective of the present work is to minimize the surface roughness to obtain better surface finish and maximization of material removal rate for better productivity. The design of experiments was done with the help of Taguchi L9 orthogonal array. Analysis of variance (ANOVA) was used to find out the significance of the input parameters on the response parameters. Percentage contribution for each control parameter was calculated using ANOVA with 95 % confidence value. From results, it was observed that feed is the most significant factor for surface roughness and the depth of cut is the most significant control parameter for Material removal rate.


2020 ◽  
Vol 38 (9A) ◽  
pp. 1406-1413
Author(s):  
Yousif Q. Laibia ◽  
Saad K. Shather

Electrical discharge machining (EDM) is one of the most common non-traditional processes for the manufacture of high precision parts and complex shapes. The EDM process depends on the heat energy between the work material and the tool electrode. This study focused on the material removal rate (MRR), the surface roughness, and tool wear in a 304 stainless steel EDM. The composite electrode consisted of copper (Cu) and silicon carbide (SiC). The current effects imposed on the working material, as well as the pulses that change over time during the experiment. When the current used is (8, 5, 3, 2, 1.5) A, the pulse time used is (12, 25) μs and the size of the space used is (1) mm. Optimum surface roughness under a current of 1.5 A and the pulse time of 25 μs with a maximum MRR of 8 A and the pulse duration of 25 μs.


2020 ◽  
Vol 38 (9A) ◽  
pp. 1352-1358
Author(s):  
Saad K. Shather ◽  
Abbas A. Ibrahim ◽  
Zainab H. Mohsein ◽  
Omar H. Hassoon

Discharge Machining is a non-traditional machining technique and usually applied for hard metals and complex shapes that difficult to machining in the traditional cutting process. This process depends on different parameters that can affect the material removal rate and surface roughness. The electrode material is one of the important parameters in Electro –Discharge Machining (EDM). In this paper, the experimental work carried out by using a composite material electrode and the workpiece material from a high-speed steel plate. The cutting conditions: current (10 Amps, 12 Amps, 14 Amps), pulse on time (100 µs, 150 µs, 200 µs), pulse off time 25 µs, casting technique has been carried out to prepare the composite electrodes copper-sliver. The experimental results showed that Copper-Sliver (weight ratio70:30) gives better results than commonly electrode copper, Material Removal Rate (MRR) Copper-Sliver composite electrode reach to 0.225 gm/min higher than the pure Copper electrode. The lower value of the tool wear rate achieved with the composite electrode is 0.0001 gm/min. The surface roughness of the workpiece improved with a composite electrode compared with the pure electrode.


2021 ◽  
Vol 5 (2) ◽  
pp. 41
Author(s):  
Irati Malkorra ◽  
Hanène Souli ◽  
Ferdinando Salvatore ◽  
Pedro Arrazola ◽  
Joel Rech ◽  
...  

Drag finishing is a widely used superfinishing technique in the industry to polish parts under the action of abrasive media combined with an active surrounding liquid. However, the understanding of this process is not complete. It is known that pyramidal abrasive media are more prone to rapidly improving the surface roughness compared to spherical ones. Thus, this paper aims to model how the shape of abrasive media (spherical vs. pyramidal) influences the material removal mechanisms at the interface. An Arbitrary Lagrangian–Eulerian model of drag finishing is proposed with the purpose of estimating the mechanical loadings (normal stress, shear stress) induced by both abrasive media at the interface. The rheological behavior of both abrasive slurries (media and liquid) has been characterized by means of a Casagrande direct shear test. In parallel, experimental drag finishing tests were carried out with both media to quantify the drag forces. The correlation between the numerical and experimental drag forces highlights that the abrasive media with a pyramidal shape exhibits a higher shear resistance, and this is responsible for inducing higher mechanical loadings on the surfaces and, through this, for a faster decrease of the surface roughness.


Author(s):  
Mayank Srivastava ◽  
Pulak M Pandey

In the present work, a novel hybrid finishing process that combines the two preferred methods in industries, namely, chemical-mechanical polishing (CMP) and magneto-rheological finishing (MRF), has been used to polish monocrystalline silicon wafers. The experiments were carried out on an indigenously developed double-disc chemical assisted magnetorheological finishing (DDCAMRF) experimental setup. The central composite design (CCD) was used to plan the experiments in order to estimate the effect of various process factors, namely polishing speed, slurry flow rate, percentage CIP concentration, and working gap on the surface roughness ([Formula: see text]) by DDCAMRF process. The analysis of variance was carried out to determine and analyze the contribution of significant factors affecting the surface roughness of polished silicon wafer. The statistical investigation revealed that percentage CIP concentration with a contribution of 30.6% has the maximum influence on the process performance followed by working gap (21.4%), slurry flow rate (14.4%), and polishing speed (1.65%). The surface roughness of polished silicon wafers was measured by the 3 D optical profilometer. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were carried out to understand the surface morphology of polished silicon wafer. It was found that the surface roughness of silicon wafer improved with the increase in polishing speed and slurry flow rate, whereas it was deteriorated with the increase in percentage CIP concentration and working gap.


Sign in / Sign up

Export Citation Format

Share Document