Understanding the role of Salmonella pathogenic island 1 (SPI-I) and host-pathogen interaction for typhoid using system biology approach

Author(s):  
Devender Arora ◽  
Kumari Jyoti ◽  
Ajeet Singh
Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 905
Author(s):  
Estela Ruiz-Baca ◽  
Armando Pérez-Torres ◽  
Yolanda Romo-Lozano ◽  
Daniel Cervantes-García ◽  
Carlos A. Alba-Fierro ◽  
...  

The role of immune cells associated with sporotrichosis caused by Sporothrix schenckii is not yet fully clarified. Macrophages through pattern recognition receptors (PRRs) can recognize pathogen-associated molecular patterns (PAMPs) of Sporothrix, engulf it, activate respiratory burst, and secrete pro-inflammatory or anti-inflammatory biological mediators to control infection. It is important to consider that the characteristics associated with S. schenckii and/or the host may influence macrophage polarization (M1/M2), cell recruitment, and the type of immune response (1, 2, and 17). Currently, with the use of new monocyte-macrophage cell lines, it is possible to evaluate different host–pathogen interaction processes, which allows for the proposal of new mechanisms in human sporotrichosis. Therefore, in order to contribute to the understanding of these host–pathogen interactions, the aim of this review is to summarize and discuss the immune responses induced by macrophage-S. schenckii interactions, as well as the PRRs and PAMPs involved during the recognition of S. schenckii that favor the immune evasion by the fungus.


Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1747 ◽  
Author(s):  
Daniel Humphreys ◽  
Mohamed ElGhazaly ◽  
Teresa Frisan

Damage to our genomes triggers cellular senescence characterised by stable cell cycle arrest and a pro-inflammatory secretome that prevents the unrestricted growth of cells with pathological potential. In this way, senescence can be considered a powerful innate defence against cancer and viral infection. However, damage accumulated during ageing increases the number of senescent cells and this contributes to the chronic inflammation and deregulation of the immune function, which increases susceptibility to infectious disease in ageing organisms. Bacterial and viral pathogens are masters of exploiting weak points to establish infection and cause devastating diseases. This review considers the emerging importance of senescence in the host–pathogen interaction: we discuss the pathogen exploitation of ageing cells and senescence as a novel hijack target of bacterial pathogens that deploys senescence-inducing toxins to promote infection. The persistent induction of senescence by pathogens, mediated directly through virulence determinants or indirectly through inflammation and chronic infection, also contributes to age-related pathologies such as cancer. This review highlights the dichotomous role of senescence in infection: an innate defence that is exploited by pathogens to cause disease.


2020 ◽  
Vol 11 (Suppl 1) ◽  
pp. S30-S36
Author(s):  
Babak Arjmand ◽  
Mostafa Rezaei-Tavirani ◽  
Mohammadreza Razzaghi ◽  
Mohammad Rostami-Nejad ◽  
Mostafa Hamdieh ◽  
...  

2019 ◽  
Vol 5 (3) ◽  
pp. 62 ◽  
Author(s):  
Adriana Caneppa ◽  
Jardel de Meirelles ◽  
Rodrigo Rollin-Pinheiro ◽  
Mariana Xisto ◽  
Livia Liporagi-Lopes ◽  
...  

Scedosporium/Lomentospora complex is composed of filamentous fungi, including some clinically relevant species, such as Pseudallescheria boydii, Scedosporium aurantiacum, and Scedosporium apiospermum. Glucosylceramide (GlcCer), a conserved neutral glycosphingolipid, has been described as an important cell surface molecule playing a role in fungal morphological transition and pathogenesis. The present work aimed at the evaluation of GlcCer structures in S. aurantiacum and Pseudallescheria minutispora, a clinical and an environmental isolate, respectively, in order to determine their participation in fungal growth and host-pathogen interactions. Structural analysis by positive ion-mode ESI-MS (electrospray ionization mass spectrometer) revealed the presence of different ceramide moieties in GlcCer in these species. Monoclonal antibodies against Aspergillus fumigatus GlcCer could recognize S. aurantiacum and P. minutispora conidia, suggesting a conserved epitope in fungal GlcCer. In addition, these antibodies reduced fungal viability, enhanced conidia phagocytosis by macrophages, and decreased fungal survival inside phagocytic cells. Purified GlcCer from both species led to macrophage activation, increasing cell viability as well as nitric oxide and superoxide production in different proportions between the two species. These results evidenced some important properties of GlcCer from species of the Scedosporium/Lomentospora complex, as well as the effects of monoclonal anti-GlcCer antibodies on fungal cells and host-pathogen interaction. The differences between the two species regarding the observed biological properties suggest that variation in GlcCer structures and strain origin could interfere in the role of GlcCer in host-pathogen interaction.


2021 ◽  
Author(s):  
Muhammad Junaid Yousaf ◽  
Anwar Hussain ◽  
Amjad Iqbal

Abstract Phyto-signalling molecules are minute, but tangible that has rigorous roles in any plant-pathogen interaction. Certainly, most of the pathogen alters their biosynthesis, transport, degradation and cellular signalling responses to pave their virulence. Therefore, the gene expressions of such molecules with their correlated defense mechanisms were analysed in Arabidopsis thaliana against Erysiphe orontii (a potential biotroph), Botrytis cinerea (a potential necrotroph), Pseudomonas syringae (a bacterial hemibiotroph), and Phytophthora infestans (a fungal hemibiotroph) using molecular biology/ system biology techniques. The findings strongly suggested that each pathogen has its own unique infection strategy based on up-regulation and down-regulation of host phyto-signalling genes. Our studies also explored four basic pathogenic infection maps based on cross linking phyto-signalling molecules.


2015 ◽  
Vol 25 (2) ◽  
pp. 175-190 ◽  
Author(s):  
Hui Li ◽  
Qiming Li ◽  
Wu Li ◽  
Longxiang Xie ◽  
Mingliang Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document