scholarly journals Biological regulatory networks are less nonlinear than expected by chance

2021 ◽  
Author(s):  
Santosh Manicka ◽  
Kathleen Johnson ◽  
David Murrugarra ◽  
Michael Levin

Nonlinearity is a characteristic of complex biological regulatory networks that has implications ranging from therapy to control. To better understand its nature, we analyzed a suite of published Boolean network models, containing a variety of complex nonlinear interactions, with an approach involving a probabilistic generalization of Boolean logic that George Boole himself had proposed. Leveraging the continuous-nature of this formulation using Taylor-decomposition methods revealed the distinct layers of nonlinearity of the models. A comparison of the resulting series of model approximations with the corresponding sets of randomized ensembles furthermore revealed that the biological networks are relatively more linearly approximable. We hypothesize that this is a result of optimization by natural selection for the purpose of controllability.

2021 ◽  
Author(s):  
CHU PAN

Using information measures to infer biological regulatory networks can observe nonlinear relationship between variables, but it is computationally challenging and there is currently no convenient tool available. We here describe an information theory R package named Informeasure that devotes to quantifying nonlinear dependence between variables in biological regulatory networks from an information theory perspective. This package compiles most of the information measures currently available: mutual information, conditional mutual information, interaction information, partial information decomposition and part mutual information. The first estimator is used to infer bivariate networks while the last four estimators are dedicated to analysis of trivariate networks. The base installation of this turn-key package allows users to approach these information measures out of the box. Informeasure is implemented in R program and is available as an R/Bioconductor package at https://bioconductor.org/packages/Informeasure.


2019 ◽  
Author(s):  
Xueming Liu ◽  
Enrico Maiorino ◽  
Arda Halu ◽  
Joseph Loscalzo ◽  
Jianxi Gao ◽  
...  

AbstractRobustness is a prominent feature of most biological systems. In a cell, the structure of the interactions between genes, proteins, and metabolites has a crucial role in maintaining the cell’s functionality and viability in presence of external perturbations and noise. Despite advances in characterizing the robustness of biological systems, most of the current efforts have been focused on studying homogeneous molecular networks in isolation, such as protein-protein or gene regulatory networks, neglecting the interactions among different molecular substrates. Here we propose a comprehensive framework for understanding how the interactions between genes, proteins and metabolites contribute to the determinants of robustness in a heterogeneous biological network. We integrate heterogeneous sources of data to construct a multilayer interaction network composed of a gene regulatory layer, and protein-protein interaction layer and a metabolic layer. We design a simulated perturbation process to characterize the contribution of each gene to the overall system’s robustness, defined as its influence over the global network. We find that highly influential genes are enriched in essential and cancer genes, confirming the central role of these genes in critical cellular processes. Further, we determine that the metabolic layer is more vulnerable to perturbations involving genes associated to metabolic diseases. By comparing the robustness of the network to multiple randomized network models, we find that the real network is comparably or more robust than expected in the random realizations. Finally, we analytically derive the expected robustness of multilayer biological networks starting from the degree distributions within or between layers. These results provide new insights into the non-trivial dynamics occurring in the cell after a genetic perturbation is applied, confirming the importance of including the coupling between different layers of interaction in models of complex biological systems.


2020 ◽  
Author(s):  
Silke D. Kühlwein ◽  
Nensi Ikonomi ◽  
Julian D. Schwab ◽  
Johann M. Kraus ◽  
K. Lenhard Rudolph ◽  
...  

AbstractBiological processes are rarely a consequence of single protein interactions but rather of complex regulatory networks. However, interaction graphs cannot adequately capture temporal changes. Among models that investigate dynamics, Boolean network models can approximate simple features of interaction graphs integrating also dynamics. Nevertheless, dynamic analyses are time-consuming and with growing number of nodes may become infeasible. Therefore, we set up a method to identify minimal sets of nodes able to determine network dynamics. This approach is able to depict dynamics without calculating exhaustively the complete network dynamics. Applying it to a variety of biological networks, we identified small sets of nodes sufficient to determine the dynamic behavior of the whole system. Further characterization of these sets showed that the majority of dynamic decision-makers were not static hubs. Our work suggests a paradigm shift unraveling a new class of nodes different from static hubs and able to determine network dynamics.


Author(s):  
Christian Darabos ◽  
Mario Giacobini ◽  
Marco Tomassini

Random Boolean Networks (RBN) have been introduced by Kauffman more than thirty years ago as a highly simplified model of genetic regulatory networks. This extremely simple and abstract model has been studied in detail and has been shown capable of extremely interesting dynamical behavior. First of all, as some parameters are varied such as the network’s connectivity, or the probability of expressing a gene, the RBN can go through a phase transition, going from an ordered regime to a chaotic one. Kauffman’s suggestion is that cell types correspond to attractors in the RBN phase space, and only those attractors that are short and stable under perturbations will be of biological interest. Thus, according to Kauffman, RBN lying at the edge between the ordered phase and the chaotic phase can be seen as abstract models of genetic regulatory networks. The original view of Kauffman, namely that these models may be useful for understanding real-life cell regulatory networks, is still valid, provided that the model is updated to take into account present knowledge about the topology of real gene regulatory networks, and the timing of events, without loosing its attractive simplicity. According to present data, many biological networks, including genetic regulatory networks, seem, in fact, to be of the scale-free type. From the point of view of the timing of events, standard RBN update their state synchronously. This assumption is open to discussion when dealing with biologically plausible networks. In particular, for genetic regulatory networks, this is certainly not the case: genes seem to be expressed in different parts of the network at different times, according to a strict sequence, which depends on the particular network under study. The expression of a gene depends on several transcription factors, the synthesis of which appear to be neither fully synchronous nor instantaneous. Therefore, we have recently proposed a new, more biologically plausible model. It assumes a scale-free topology of the networks and we define a suitable semi-synchronous dynamics that better captures the presence of an activation sequence of genes linked to the topological properties of the network. By simulating statistical ensembles of networks, we discuss the attractors of the dynamics, showing that they are compatible with theoretical biological network models. Moreover, the model demonstrates interesting scaling abilities as the size of the networks is increased.


Author(s):  
Ziqiao Yin ◽  
Binghui Guo ◽  
Shuangge Ma ◽  
Yifan Sun ◽  
Zhilong Mi ◽  
...  

Abstract Structures of genetic regulatory networks are not fixed. These structural perturbations can cause changes to the reachability of systems’ state spaces. As system structures are related to genotypes and state spaces are related to phenotypes, it is important to study the relationship between structures and state spaces. However, there is still no method can quantitively describe the reachability differences of two state spaces caused by structural perturbations. Therefore, Difference in Reachability between State Spaces (DReSS) is proposed. DReSS index family can quantitively describe differences of reachability, attractor sets between two state spaces and can help find the key structure in a system, which may influence system’s state space significantly. First, basic properties of DReSS including non-negativity, symmetry and subadditivity are proved. Then, typical examples are shown to explain the meaning of DReSS and the differences between DReSS and traditional graph distance. Finally, differences of DReSS distribution between real biological regulatory networks and random networks are compared. Results show most structural perturbations in biological networks tend to affect reachability inside and between attractor basins rather than to affect attractor set itself when compared with random networks, which illustrates that most genotype differences tend to influence the proportion of different phenotypes and only a few ones can create new phenotypes. DReSS can provide researchers with a new insight to study the relation between genotypes and phenotypes.


2014 ◽  
Vol 686 ◽  
pp. 463-469
Author(s):  
Zhen Cheng Fang

Along with the completion of HGP (human genome project), huge amounts of genetic data constantly emerge. Research suggests that genes are not in independent existence and the expression of a gene will promote or inhibit the expression of another gene; if the expression of a gene makes the biochemical environment of cells changed, the expression of a series of genes will be affected. In order to get a better understanding of the relationship between genes, all sorts of gene regulatory network models have been established by scientists. In this paper, a variety of gene regulatory networks are first introduced according to the process of this subject research, and then the most basic network (i.e. Boolean network) is emphatically analyzed, and then a new method (i.e. Boolean network based on the theory of circuit) to describe Boolean network is drawn forth. After the shortcomings of the Boolean network proposed in the past are analyzed, a simulation circuit Boolean model is established using EDA technology in order to improve the Boolean network.


2018 ◽  
Author(s):  
Wenpin Hou ◽  
Peiying Ruan ◽  
Wai-Ki Ching ◽  
Tatsuya Akutsu

AbstractIt is known that many driver nodes are required to control complex biological networks. Previous studies imply that O(N) driver nodes are required in both linear complex network and Boolean network models with N nodes if an arbitrary state is specified as the target. In this paper, we mathematically prove under a reasonable assumption that the expected number of driver nodes is only O(log2N + log2M) for controlling Boolean networks if the targets are restricted to attractors, where M is the number of attractors. Since it is expected that M is not very large in many practical networks, this is a significant improvement. This result is based on discovery of novel relationships between control problems on Boolean networks and the coupon collector’s problem, a well-known concept in combinatorics. We also provide lower bounds of the number of driver nodes as well as simulation results using artificial and realistic network data, which support our theoretical findings.


2018 ◽  
Author(s):  
Aurélien Naldi

AbstractHere we introduce bioLQM, a new Java software toolkit for the conversion, modification, and analysis of Logical Qualitative Models of biological regulatory networks, aiming to foster the development of novel complementary tools by providing core modelling operations. Based on the definition of multi-valued logical models, it implements import and export facilities, notably for the recent SBML-qual exchange format, as well as for formats used by several popular tools, facilitating the design of workflows combining these tools. Model modifications enable the definition of various perturbations, as well as model reduction, easing the analysis of large models. Another modification enables the study of multi-valued models with tools limited to the Boolean case. Finally, bioLQM provides a framework for the development of novel analysis tools. The current version implements the usual updating modes for model simulation (notably synchronous, asynchronous, and random asynchronous), as well as some static analysis features for the identification of attractors. The bioLQM software can be integrated into analysis workflows through command line and scripting interfaces. As a Java library, it further provides core data structures to the GINsim and EpiLog interactive tools, which supply graphical interfaces and additional analysis methods for cellular and multi-cellular qualitative models.


2019 ◽  
Vol 19 (6) ◽  
pp. 413-425 ◽  
Author(s):  
Athanasios Alexiou ◽  
Stylianos Chatzichronis ◽  
Asma Perveen ◽  
Abdul Hafeez ◽  
Ghulam Md. Ashraf

Background:Latest studies reveal the importance of Protein-Protein interactions on physiologic functions and biological structures. Several stochastic and algorithmic methods have been published until now, for the modeling of the complex nature of the biological systems.Objective:Biological Networks computational modeling is still a challenging task. The formulation of the complex cellular interactions is a research field of great interest. In this review paper, several computational methods for the modeling of GRN and PPI are presented analytically.Methods:Several well-known GRN and PPI models are presented and discussed in this review study such as: Graphs representation, Boolean Networks, Generalized Logical Networks, Bayesian Networks, Relevance Networks, Graphical Gaussian models, Weight Matrices, Reverse Engineering Approach, Evolutionary Algorithms, Forward Modeling Approach, Deterministic models, Static models, Hybrid models, Stochastic models, Petri Nets, BioAmbients calculus and Differential Equations.Results:GRN and PPI methods have been already applied in various clinical processes with potential positive results, establishing promising diagnostic tools.Conclusion:In literature many stochastic algorithms are focused in the simulation, analysis and visualization of the various biological networks and their dynamics interactions, which are referred and described in depth in this review paper.


Sign in / Sign up

Export Citation Format

Share Document