The role of fluid dynamics in plaque excavation and rupture in the human carotid bifurcation: a computational study

Author(s):  
Scott Lovald ◽  
Juan Heinrich ◽  
Tariq Khraishi ◽  
Howard Yonas ◽  
Suguna Pappu
Author(s):  
Marco Cantini ◽  
Gianfranco B. Fiore ◽  
Alberto Redaelli ◽  
Monica Soncini

Porous polymeric materials play a key role in regenerative medicine, serving as three-dimensional scaffolds for cell culture. Hence, the definition of their micro-architecture should be regarded as a pivotal design issue, that has to be wittingly addressed while engineering a cell culture system. Computational fluid dynamics techniques (CFD) appear to be very valuable in this respect, since they have been appreciably applied in recent literature as a means to analyze fluid dynamics and mass transport inside scaffold or bioreactor models [1]; moreover, leading researchers in tissue engineering have acknowledged the role of numerical methodology in the issue of defining optimal flow conditions for three-dimensional dynamic culture systems.


2003 ◽  
Vol 31 (2) ◽  
pp. 132-141 ◽  
Author(s):  
Jonathan B. Thomas ◽  
Jaques S. Milner ◽  
Brian K. Rutt ◽  
David A. Steinman

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4083
Author(s):  
Heming Jiang ◽  
Tian-Yu Sun

A computational study on the origin of the activating effect for Pd-catalyzed directed C–H activation by the concerted metalation-deprotonation (CMD) mechanism is conducted. DFT calculations indicate that strong acids can make Pd catalysts coordinate with directing groups (DGs) of the substrates more strongly and lower the C–H activation energy barrier. For the CMD mechanism, the electrophilicity of the Pd center and the basicity of the corresponding acid ligand for deprotonating the C–H bond are vital to the overall C–H activation energy barrier. Furthermore, this rule might disclose the role of some additives for C–H activation.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1024
Author(s):  
Sebastien Dupont ◽  
Paul Fleurat-Lessard ◽  
Richtier Gonçalves Cruz ◽  
Céline Lafarge ◽  
Cédric Grangeteau ◽  
...  

Although the functions and structural roles of sterols have been the subject of numerous studies, the reasons for the diversity of sterols in the different eukaryotic kingdoms remain unclear. It is thought that the specificity of sterols is linked to unidentified supplementary functions that could enable organisms to be better adapted to their environment. Ergosterol is accumulated by late branching fungi that encounter oxidative perturbations in their interfacial habitats. Here, we investigated the antioxidant properties of ergosterol using in vivo, in vitro, and in silico approaches. The results showed that ergosterol is involved in yeast resistance to tert-butyl hydroperoxide and protects lipids against oxidation in liposomes. A computational study based on quantum chemistry revealed that this protection could be related to its antioxidant properties operating through an electron transfer followed by a proton transfer mechanism. This study demonstrates the antioxidant role of ergosterol and proposes knowledge elements to explain the specific accumulation of this sterol in late branching fungi. Ergosterol, as a natural antioxidant molecule, could also play a role in the incompletely understood beneficial effects of some mushrooms on health.


Sign in / Sign up

Export Citation Format

Share Document