Enhancement of quality of polypropylene by optimisation of injection moulding parameters with genetic algorithm

Author(s):  
Deepak Kumar ◽  
G.S. Dangayach ◽  
P.N. Rao
Author(s):  
Ge Weiqing ◽  
Cui Yanru

Background: In order to make up for the shortcomings of the traditional algorithm, Min-Min and Max-Min algorithm are combined on the basis of the traditional genetic algorithm. Methods: In this paper, a new cloud computing task scheduling algorithm is proposed, which introduces Min-Min and Max-Min algorithm to generate initialization population, and selects task completion time and load balancing as double fitness functions, which improves the quality of initialization population, algorithm search ability and convergence speed. Results: The simulation results show that the algorithm is superior to the traditional genetic algorithm and is an effective cloud computing task scheduling algorithm. Conclusion: Finally, this paper proposes the possibility of the fusion of the two quadratively improved algorithms and completes the preliminary fusion of the algorithm, but the simulation results of the new algorithm are not ideal and need to be further studied.


2021 ◽  
Vol 11 (14) ◽  
pp. 6401
Author(s):  
Kateryna Czerniachowska ◽  
Karina Sachpazidu-Wójcicka ◽  
Piotr Sulikowski ◽  
Marcin Hernes ◽  
Artur Rot

This paper discusses the problem of retailers’ profit maximization regarding displaying products on the planogram shelves, which may have different dimensions in each store but allocate the same product sets. We develop a mathematical model and a genetic algorithm for solving the shelf space allocation problem with the criteria of retailers’ profit maximization. The implemented program executes in a reasonable time. The quality of the genetic algorithm has been evaluated using the CPLEX solver. We determine four groups of constraints for the products that should be allocated on a shelf: shelf constraints, shelf type constraints, product constraints, and virtual segment constraints. The validity of the developed genetic algorithm has been checked on 25 retailing test cases. Computational results prove that the proposed approach allows for obtaining efficient results in short running time, and the developed complex shelf space allocation model, which considers multiple attributes of a shelf, segment, and product, as well as product capping and nesting allocation rule, is of high practical relevance. The proposed approach allows retailers to receive higher store profits with regard to the actual merchandising rules.


2020 ◽  
Vol 40 (4) ◽  
pp. 360-371
Author(s):  
Yanli Cao ◽  
Xiying Fan ◽  
Yonghuan Guo ◽  
Sai Li ◽  
Haiyue Huang

AbstractThe qualities of injection-molded parts are affected by process parameters. Warpage and volume shrinkage are two typical defects. Moreover, insufficient or excessively large clamping force also affects the quality of parts and the cost of the process. An experiment based on the orthogonal design was conducted to minimize the above defects. Moldflow software was used to simulate the injection process of each experiment. The entropy weight was used to determine the weight of each index, the comprehensive evaluation value was calculated, and multi-objective optimization was transformed into single-objective optimization. A regression model was established by the random forest (RF) algorithm. To further illustrate the reliability and accuracy of the model, back-propagation neural network and kriging models were taken as comparative algorithms. The results showed that the error of RF was the smallest and its performance was the best. Finally, genetic algorithm was used to search for the minimum of the regression model established by RF. The optimal parameters were found to improve the quality of plastic parts and reduce the energy consumption. The plastic parts manufactured by the optimal process parameters showed good quality and met the requirements of production.


2016 ◽  
Vol 2016 ◽  
pp. 1-12
Author(s):  
Chenghua Shi ◽  
Tonglei Li ◽  
Yu Bai ◽  
Fei Zhao

We present the vehicle routing problem with potential demands and time windows (VRP-PDTW), which is a variation of the classical VRP. A homogenous fleet of vehicles originated in a central depot serves customers with soft time windows and deliveries from/to their locations, and split delivery is considered. Also, besides the initial demand in the order contract, the potential demand caused by conformity consuming behavior is also integrated and modeled in our problem. The objective of minimizing the cost traveled by the vehicles and penalized cost due to violating time windows is then constructed. We propose a heuristics-based parthenogenetic algorithm (HPGA) for successfully solving optimal solutions to the problem, in which heuristics is introduced to generate the initial solution. Computational experiments are reported for instances and the proposed algorithm is compared with genetic algorithm (GA) and heuristics-based genetic algorithm (HGA) from the literature. The comparison results show that our algorithm is quite competitive by considering the quality of solutions and computation time.


2020 ◽  
Vol 10 (1) ◽  
pp. 56-64 ◽  
Author(s):  
Neeti Kashyap ◽  
A. Charan Kumari ◽  
Rita Chhikara

AbstractWeb service compositions are commendable in structuring innovative applications for different Internet-based business solutions. The existing services can be reused by the other applications via the web. Due to the availability of services that can serve similar functionality, suitable Service Composition (SC) is required. There is a set of candidates for each service in SC from which a suitable candidate service is picked based on certain criteria. Quality of service (QoS) is one of the criteria to select the appropriate service. A standout amongst the most important functionality presented by services in the Internet of Things (IoT) based system is the dynamic composability. In this paper, two of the metaheuristic algorithms namely Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are utilized to tackle QoS based service composition issues. QoS has turned into a critical issue in the management of web services because of the immense number of services that furnish similar functionality yet with various characteristics. Quality of service in service composition comprises of different non-functional factors, for example, service cost, execution time, availability, throughput, and reliability. Choosing appropriate SC for IoT based applications in order to optimize the QoS parameters with the fulfillment of user’s necessities has turned into a critical issue that is addressed in this paper. To obtain results via simulation, the PSO algorithm is used to solve the SC problem in IoT. This is further assessed and contrasted with GA. Experimental results demonstrate that GA can enhance the proficiency of solutions for SC problem in IoT. It can also help in identifying the optimal solution and also shows preferable outcomes over PSO.


Author(s):  
Stephen S. Altus ◽  
Ilan M. Kroo ◽  
Peter J. Gage

Abstract Complex engineering studies typically involve hundreds of analysis routines and thousands of variables. The sequence of operations used to evaluate a design strongly affects the speed of each analysis cycle. This influence is particularly important when numerical optimization is used, because convergence generally requires many iterations. Moreover, it is common for disciplinary teams to work simultaneously on different aspects of a complex design. This practice requires decomposition of the analysis into subtasks, and the efficiency of the design process critically depends on the quality of the decomposition achieved. This paper describes the development of software to plan multidisciplinary design studies. A genetic algorithm is used, both to arrange analysis subroutines for efficient execution, and to decompose the task into subproblems. The new planning tool is compared with an existing heuristic method. It produces superior results when the same merit function is used, and it can readily address a wider range of planning objectives.


2018 ◽  
Vol 7 (4.33) ◽  
pp. 130
Author(s):  
Atiqa Zukreena Zakuan ◽  
Shuzlina Abdul-Rahman ◽  
Hamidah Jantan ◽  
. .

Succession planning is a subset of talent management that deals with multi-criteria and uncertainties which are quite complicated, ambiguous, fuzzy and troublesome. Besides that, the successor selection involves the process of searching the best candidate for a successor for an optimal selection decision. In an academic scenario, the quality of academic staff contributes to achieving goals and improving the performance of the university at the international level. The process of selecting appropriate academic staff requires good criteria in decision-making. The best candidate's position and criteria for the selection of academic staff is the responsibility of the Human Resource Management (HRM) to select the most suitable candidate for the required position. The various criteria that are involved in selecting academic staff includes research publication, teaching skills, personality, reputation and financial performance. Previously, most studies on multi-criteria decision-making adopt Fuzzy Analytical Hierarchy Process (FAHP). However, this method is more complex because it involved many steps and formula and may not produce the optimum results. Therefore, Genetic Algorithm (GA) is proposed in this research to address this problem in which a fitness function for the successor selection is based on the highest fitness value of each chromosome.    


2018 ◽  
Vol 8 (1) ◽  
pp. 99
Author(s):  
A. Y. Erwin Dodu ◽  
Deny Wiria Nugraha ◽  
Subkhan Dinda Putra

The problem of midwife scheduling is one of the most frequent problems in hospitals. Midwife should be available 24 hours a day for a full week to meet the needs of the patient. Therefore, good or bad midwife scheduling result will have an impact on the quality of care on the patient and the health of the midwife on duty. The midwife scheduling process requires a lot of time, effort and good cooperation between some parties to solve this problem that is often faced by the Regional Public Hospital Undata Palu Central Sulawesi Province. This research aimed to apply Memetics algorithm to make scheduling system of midwifery staff at Regional Public Hospital Undata Palu Central Sulawesi Province that can facilitate the process of midwifery scheduling as well as to produce optimal schedule. The scheduling system created will follow the rules and policies applicable in the hospital and will also pay attention to the midwife's preferences on how to schedule them according to their habits and needs. Memetics algorithm is an optimization algorithm that combines Evolution Algorithm  and Local Search method. Evolution Algorithm in Memetics Algorithm generally refers to Genetic Algorithm so that the characteristics of Memetics Algotihm are identical with  Genetic Algorithm characteristics with the addition of Local Search methods. Local Search in Memetic Algorithm aims to improve the quality of an individual so it is expected to accelerate the time to get a solution.


Sign in / Sign up

Export Citation Format

Share Document