scholarly journals Design and development of a novel MOSFET structure for reduction of reverse bias pn junction leakage current

Author(s):  
Debasis Mukherjee ◽  
B.V. Ramana Reddy
2018 ◽  
Vol 924 ◽  
pp. 573-576 ◽  
Author(s):  
Reza Ghandi ◽  
Peter Losee ◽  
Alexander Bolotnikov ◽  
David Lilienfeld

In this work, >2kV PiN diodes with >10um deep implant of B+ and 6um deep implant of Al+ have been fabricated to evaluate the quality of resulting pn junction after high-energy implantation. Acceptable low leakage currents at reverse bias and stable avalanche breakdown were observed for high energy implanted diodes (HEI-diodes) when compared to No-HEI-diodes that suggests minimal defect sites present after activation anneal.


2007 ◽  
Vol 556-557 ◽  
pp. 917-920 ◽  
Author(s):  
Francesco Moscatelli ◽  
Andrea Scorzoni ◽  
Antonella Poggi ◽  
Mara Passini ◽  
Giulio Pizzocchero ◽  
...  

In this work we analyzed the radiation hardness of SiC p+n diodes after very high 1 MeV neutron fluence. The diode structure is based on a p+ emitter ion implanted in n-type epilayer with thickness equal to 5 %m and donor doping ND = 3×1015 cm-3. Before irradiation, the average leakage current density at 100 V reverse bias was of the order of 3 nA/cm2. These devices were irradiated at four different fluence values, logarithmically distributed in the range 1014-1016 (1 MeV) neutrons/cm2. After irradiation the epilayer material became more resistive, as indicated by the reduction of the forward and reverse current density at a given voltage. In particular, after a neutron fluence of 1×1014 n/cm2 the epilayer active doping concentration decreased to 1.5×1015 cm-3. After irradiation at 1016 n/cm2, i.e. the highest fluence value, the average leakage current density at 100 V reverse bias decreased to values of the order of 0.1 nA/cm2. This very low noise even after very high fluence is very important to obtain a high signal to noise ratio even at room temperature.


2011 ◽  
Vol 465 ◽  
pp. 322-325
Author(s):  
Petr Paračka ◽  
Pavel Koktavý ◽  
Robert Macku

PN junction is one of the most important parts of solar cells. Its quality affects lifetime and efficiency of solar cells. Local defects which appear in PN junctions during the manufacture process are very important from this point of view. These are caused by localized areas with high donor or acceptor doping agents, impurities, dislocations or other mechanisms which effect in lower breakdown voltage of PN junction in reverse bias. Several base methods can be used for solar cells nondestructive diagnostics. Measuring methods of low-band noise current effective value with reverse bias junction were used in this paper. This method allows detection of local defects and volume degradation in PN junctions of solar cells and it can be used for detection of microplasma noise. This noise is an impulse noise and it is caused by local avalanche breakdowns in small area of the junction. It can be recognized by two or more level random square current pulses with constant height, random appearance time and random pulse length. Information about these effects can be used in noise diagnostics of structural defects of PN junctions and then it can be used for quality and lifetime estimation of samples with these parameters.


Sign in / Sign up

Export Citation Format

Share Document