Optimising Friction Stir Welding parameters to maximise tensile strength of AA6061 aluminium alloy joints

2008 ◽  
Vol 3 (3) ◽  
pp. 321 ◽  
Author(s):  
K. Elangovan ◽  
V. Balasubramanian ◽  
S. Babu ◽  
M. Balasubramanian
2012 ◽  
Vol 445 ◽  
pp. 789-794 ◽  
Author(s):  
Vahid Moosabeiki ◽  
Ghasem Azimi ◽  
Mostafa Ghayoor

Friction stir welding (FSW) process is an emerging solid state joining process in which the material that is being welded does not melt and recast. This process uses a non-consumable tool to generate frictional heat in the abutting surfaces. The welding parameters such as tool rotational speed, welding speed, axial force, etc., and tool pin profile play a major role in deciding the weld quality. Friction stir tool plays a major role in friction stir welding process. In this investigation, it is tried to evaluate the effect of tool pin thread and tool shoulder curvature on FSW zone formation in AA6061 aluminium alloy. In this regard, six different tool pin geometries (threadless triangular pin with/without conical shoulder, threaded triangular pin with conical shoulder, threadless square pin with/without conical shoulder, threaded square pin with conical shoulder) are used to fabricate the joints. The formation of FSP zones are analyzed macroscopically. Tensile properties of the joints are evaluated and correlated with the FSP zone formation. Consequently, it is obtained that welding creates a higher quality compared to other tool pin profiles using the square tool with curved shoulder and having threaded pin.


Author(s):  
Sanjeev Verma ◽  
Vinod Kumar

Aluminium and its alloys are lightweight, corrosion-resistant, affordable and high-strength material and find wide applications in shipbuilding, automotive, constructions, aerospace and other industrial sectors. In applications like aerospace, marine and automotive industries, there is a need to join components made of different aluminium alloys, viz. AA6061 and AA5083. In this study friction stir welding (FSW) is used to join dissimilar plates made of AA6061-T6 and AA5083-O. The effect of varying tool pin profile, tool rotation speed, tool feed rate and tilt angle of the tool has been investigated on the tensile strength and percentage elongation of the welded joints. Box-Behkan design, with four input parameters and three levels of each parameter has been employed to decide the set of experimental runs. The regression models have been developed to investigate the influence of welding variables on the tensile strength and elongation of the welded joint. It is revealed that with the increase in welding parameters like tool rpm, tool feed rate and tilt angle of the tool, both the mechanical properties increase, reach a maximum level, followed by a decrease with further increase in the value of parameters. Amongst different types of tool pin profiles used, the FSW tool having straight cylindrical (SC) pin profile is found to yield the maximum strength and elongation of the welded joint for different combinations of welding parameters. Multiple response optimization indicates that the maximum UTS (135.83 MPa) and TE (4.35%) are obtained for the welded joint fabricated using FSW tool having SC pin profile, tilted at 1.11° and operating at tool speed and feed rate of 1568 rpm and 39.53 mm/min., respectively.


2012 ◽  
Vol 622-623 ◽  
pp. 323-329
Author(s):  
Ebtisam F. Abdel-Gwad ◽  
A. Shahenda ◽  
S. Soher

Friction stir welding (FSW) process is a solid state welding process in which the material being welded does not melt or recast. This process uses a non-consumable tool to generate frictional heat in the abutting surfaces. The welding parameters and tool pin profile play major roles in deciding the weld quality. In this investigation, an attempt has been made to understand effects of process parameters include rotation speeds, welding speeds, and pin diameters on al.uminum weldment using double shoulder tools. Thermal and tensile behavior responses were examined. In this direction temperatures distribution across the friction stir aluminum weldment were measured, besides tensile strength and ductility were recorded and evaluated compared with both single shoulder and aluminum base metal.


2014 ◽  
Vol 59 (1) ◽  
pp. 385-392
Author(s):  
B. Rams ◽  
A. Pietras ◽  
K. Mroczka

Abstract The article presents application of FSW method for joining elements made of cast aluminium alloys which are hardly weldable with other known welding techniques. Research’s results of plasticizing process of aluminium and moulding of seam weld during different FSW process’ conditions were also presented. Influence of welding parameters, shape and dimensions of tool on weld structure, welding stability and quality was examined. Application of FSW method was exemplified on welding of hemispheres for valves made of cast aluminium alloy EN AC-43200.


2019 ◽  
Vol 269 ◽  
pp. 02006
Author(s):  
Li Fu ◽  
Fenjun Liu

Al-Mg-Si (6061-T6) alloy with 0.8 mm thick plate was welded successfully by use of high speed friction stir welding (FSW) technology. The microstructural characteristics and mechanical property of the butt joints prepared by high speed FSW were analyzed in detail, the influence of welding parameters, fixture condition and after welding heat treatment were also explored. The results shown that sound surface topography and defect-free bonding interface were observed in the nugget zone (NZ). The microhardness of the as-welded joint was lower than that of the base metal because of the welding heat effect. Compared with the conventional speed FSW, the number of β-Mg2Si, Al2CuMg and Al8Fe2Si precipitated phases existed in the high speed FSWed NZ increased, which made the microhardness in the NZ improved significantly. The rod-shaped precipitates (Mg2Si) have the greatest influence on the microhardness distributions. The maximum tensile strength of 301.8 MPa, which was 85.8% of the base metal, was obtained at high rotation speed of 8000 rpm and fast welding speed of 1500 mm/min. The tensile strength of the ultra-high speed FSWed butt joints were improved significantly by post-weld artificial aging, with a maximum joint efficiency of 90.4%.


2019 ◽  
Vol 16 (3) ◽  
pp. 606-622
Author(s):  
Navneet Khanna ◽  
Mahesh Bharati ◽  
Prachi Sharma ◽  
Vishvesh J. Badheka

Purpose The demand for aluminium alloys has been increasing in almost all the fields. In this study, the friction stir welding (FSW) of similar aluminium alloy AA 8011-h14 has been presented using three levels of tool rotational speed (n), tool tilt angle (ϴ) and tool feed (f). The purpose of this paper is to study the effect of welding parameters on various properties and time-temperature plots. Design/methodology/approach FSW was carried out using the L-9 orthogonal array of welding parameters generated using the Taguchi approach. Visual inspection and radiography testing were conducted to detect the surface and volume defects, respectively. Taguchi analysis was carried out to get optimised welding parameters for tensile testing. The microstructural analysis was carried out for the specimen possessing maximum tensile strength and the obtained grain structures were compared with the microstructure results of the base material. The peak process temperatures were noted and time-temperature plots were analysed for the varying parameters. The maximum value of hardness was recorded and analysed. Findings Visual inspection and radiography testing confirmed defect-free joints. The maximum tensile strength achieved was 84.44 MPa with 64.95 per cent efficiency. The optimised parameters obtained using Taguchi analysis for tensile testing were 1,500 rpm, 1° and 50 mm/min. Microstructure analysis for the specimen possessing maximum tensile strength revealed fine and equiaxed grains in the nugget zone. Time-temperature plots suggested the maximum temperature of 389 °C on the advancing side. A maximum hardness value of 36.4 HV was obtained in the nugget zone. Originality/value As per the knowledge of the authors, this study is the first attempt for the detailed experimental analysis on the FSW of this particular aluminium alloy AA 8011-h14.


2020 ◽  
Vol 863 ◽  
pp. 85-95
Author(s):  
Truong Minh Nhat ◽  
Truong Quoc Thanh ◽  
Tu Vinh Thong ◽  
Tran Trong Quyet ◽  
Luu Phuong Minh

This study presents conducted heat simulations and experimental jointing flat-plate of aluminum alloy 6061 and SUS 304. Temperature is simulated by the COMSOL software in three states: (1) Preheat the Friction Stir Welding (FSW) by TIG welding, (2) Thermal contact resistance between Aluminium and steel, and (3) The welding process using stiring friction is simulated. The simulations intended to predicting the temperature which is used for preheat and welding process to ensuring the required solid-state welding. The temperature is also determined and checked by a thermal imager comparing with simulation results. Besides, the results of tensile strength is carried out. The Box - Behnken method is used to identify the relationship between the welding parameters (rotation, speed and offset), temperature and tensile strength. The maximum tensile strength is 77% compared to the strength of aluminum alloy. The optimal set of parameters for the process is n = 676 rpm, v = 46 mm / min and x = 0.6 mm. The optimizing welding parameters to achieving good quality of welding process are described. SEM images to determine some properties of welding materials. This is also the basis for initial research to identify some defects in welding of two different materials (IMC thickness and interconnected pores) and the cause of these defects.


Sign in / Sign up

Export Citation Format

Share Document