Considerations on the use of ultrasonic pulse velocity, compressive and indirect tensile tests for the quality control of statically compressed earth samples

Author(s):  
Mario Solis ◽  
Jacinto Canivell ◽  
Jose D. Rodríguez Mariscal
2021 ◽  
Vol 5 (6) ◽  
pp. 146
Author(s):  
Mahmoud Abu-Saleem ◽  
Yan Zhuge ◽  
Reza Hassanli ◽  
Mark Ellis ◽  
Md Mizanur Rahman ◽  
...  

Different types of recycled plastic have been used in concrete and most studies have focused on the behaviour of a single type of plastic. However, separating plastic wastes increases the cost and time of processing. To tackle this problem, this research presents an experimental investigation to determine the effect of incorporating different combinations of three types of recycled plastic waste aggregates—Polyethylene terephthalate (PET), High Density Polyethylene (HDPE) and Polypropylene (PP)—at different replacement ratios of coarse aggregate on physical and mechanical properties of concrete. The combinations include two plastic types at 10% and 20% replacement ratios and three plastic types at 15% and 30% replacement ratios. The performance of the plastic concrete was assessed based on various physical and mechanical properties including workability, fresh and dry densities, air content, compressive, indirect tensile and flexural strengths, modulus of elasticity, stress-strain behaviour and ultrasonic pulse velocity. It is found that the workability of Mixed Recycled Plastic Concrete (MRPC) at a low replacement rate is independent of the type of plastic. The minimum reduction in the compressive strength, indirect tensile and modulus of elasticity were achieved by R3 (PET + PP) at 10% replacement, while R5 (HDPE + PP) at 10% replacement achieved the highest flexural strength and ultrasonic pulse velocity values. The findings suggest that the mixed recycled plastics have a good possibility to partially replace coarse aggregates in concrete which will benefit the plastics recycling community and environment. Furthermore, the study will provide guidance to the concrete industry concerning the effect of the implementation of unsorted mixed types of plastic as coarse aggregates in the production of concrete.


2021 ◽  
Vol 13 (9) ◽  
pp. 168781402110349
Author(s):  
Yeol Choi ◽  
Joo-Won Kang ◽  
Tae-Yeon Hwang ◽  
Chang-Geun Cho

This paper presents the results of an experimental investigation on the relationship between strength and ultrasonic pulse velocity (UPV) of concrete exposed to high temperature, especially for a decision of building remodeling of concrete structures. The experiments were conducted at three different initial compressive strength levels for temperature up to 800°C. UPV, Compressive, and splitting tensile tests and UPV measurements were performed for unheated and heated concrete specimens. The measured UPV values in the present work were correlated with compressive and tensile strengths to estimate the strength of concrete. Based on the results, two linear equations for predicting compressive and tensile strength of concrete at elevated temperatures using UPV have been proposed. It is found that the difference of initial compressive strength of concrete does not have a significant effect on the strength reduction ratio after exposed to high temperatures. In addition, the reduction factors of compressive and tensile strengths in the present work do not well comply with the values of suggested by EN 1992-1-2.


2013 ◽  
Vol 12 (3) ◽  
Author(s):  
Sudarmadi Sudarmadi

In this paper a case study about concrete strength assessment of bridge structure experiencing fire is discussed. Assessment methods include activities of visual inspection, concrete testing by Hammer Test, Ultrasonic Pulse Velocity Test, and Core Test. Then, test results are compared with the requirement of RSNI T-12-2004. Test results show that surface concrete at the location of fire deteriorates so that its quality is decreased into the category of Very Poor with ultrasonic pulse velocity ranges between 1,14 – 1,74 km/s. From test results also it can be known that concrete compressive strength of inner part of bridge pier ranges about 267 – 274 kg/cm2 and concrete compressive strength of beam and plate experiencing fire directly is about 173 kg/cm2 and 159 kg/cm2. It can be concluded that surface concrete strength at the location of fire does not meet the requirement of RSNI T-12-2004. So, repair on surface concrete of pier, beam, and plate at the location of fire is required.


2021 ◽  
Vol 11 (9) ◽  
pp. 3747
Author(s):  
Leticia Presa ◽  
Jorge L. Costafreda ◽  
Domingo Alfonso Martín

This work aims to study the relationship between the compression resistance and velocity from ultrasonic pulses in samples of mortars with 25% of pozzolanic content. Pozzolanic cement is a low-priced sustainable material that can reduce costs and CO2 emissions that are produced in the manufacturing of cement from the calcination of calcium carbonate. Using ultrasonic pulse velocity (UPV) to estimate the compressive resistance of mortars with pozzolanic content reduces costs when evaluating the quality of structures built with this material since it is not required to perform an unconfined compression test. The objective of this study is to establish a correlation in order to estimate the compression resistance of this material from its ultrasonic pulse velocity. For this purpose, we studied a total of 16 cement samples, including those with additions of pozzolanic content with different compositions and a sample without any additions. The results obtained show the mentioned correlation, which establishes a basis for research with a higher number of samples to ascertain if it holds true at greater curing ages.


Sign in / Sign up

Export Citation Format

Share Document